添付書類1 分野別の主な技術提案の総括 [技術分野6: 地下水等の挙動把握]

特に提案をお願いしたい技術		ご提案		· · · 提案		
 項目	小項目	分類	番号	関連するキーワード	・ ご提案いただいた技術の傾向	専門家レビュー会議によるコメント
		#	208	航空機探査	土木学会から、水位測定に関連した提案があった。 データ収集方法については、掘削を伴わない地下水調査方法として、航空機や人工衛星を用いたリモートセンシングや各種物理探査が提案さ	・地下水の挙動把握は、「建屋内の汚染水管理」(分野4)や「地下水流入
		物理探査・リモートセンシング	344	航空·地上·孔内物理探査		抑制の敷地管理」(分野5)を検討するための基礎知識としても重要であ
			323, 413, 481	電気探査		ి .
	個別の要素 技術	試錐孔内調査	182	水理試験、地球化学	た。 また、試錐孔を用いた調査では、水位や透水係数などの水理定数、流向流速の測定が提案された。トレーサーを用いた調査では、一般トレーサーやホウ素などの同位体を用いた手法が提案された。 その他に、迅速簡便に水位や放射線量を測定する方法として3成分コーン貫入試験などが提案されている。	・汚染水に含まれる ⁹⁰ SrやBをトレーサーと見做した調査を行う提案は興味深い。土壌中の ⁹⁰ Srの分析精度が高いので、トレーサーとして有効と考
			272, 678	水位測定		
			282, 387	水位・水質観測、コア測定		えられる。
			571	透水試験、水みち検層		 ・トリチウムは地下水と同じ挙動をし、その分析は容易で検出感度も高い
			572	流向流速		ので、地下水流動解析に使用できる。ただし、天然に存在するトリチウムや事故で大気に放出されたトリチウムの存在についての考慮が必要である。 ・3Hの娘核種である3Heを3Hの指標として用いる提案も興味深い。3Heは3Hと組み合わせて地下水年代測定にも用いられている。ただし3Heの分
			654	コア試験、透水試験		
		トレーサ調査	182, 429, 661, 372	ホウ素同位体、放射性同位体(³ H, ¹⁴ C)、ヘリウム同位体(³ He)		
			451	コントロール掘削孔を使った物理探査, モニタリング		
			709, 767	汚染/施設下のコントロール掘削		析はコストがかかると思われ、直接 ³ H濃度を分析できない土壌ガスに適用するのが良いと思われる。
		その他	289	光ファイバセンサによる微小水量計測		
			492	LosAlamos等での経験		・物理探査手法によるモニタリングやトモグラフィー法の提案に関しては、
			710	3成分コーン、水圧式コーン試験の無人化		発電所の地下に多くの構造物があることを考慮すべきである。
		•	108	現地水文調査、既存水位データ解析		・マイクロラボの提案については、リアルタイムのモニタリングの要否についても考慮すべきである。
			349	地質・水理データ		
	総合的な調査		388	割れ目からの被圧地下水の上昇、水理地質構 造解析	既存データの収集・整理を含め、地下水の状態を把握する手法として、 複数の手法を組み合わせて調査を行い、総合的に評価を行う手法についての提案が数多くあった。	
(1)データ収集の方法			655	涵養域・広域・敷地調査		
			677	水みち、流向流速、地下水化学		
			742	Sellafield他の経験		
			745	水位、水温、pH、EC、トレーサー		
			755	モニタリングのデータベース化		
	モニタリング	試錐孔を用いたモニタリング	175, 245, 272, 349, 499	水位·間隙水圧	汚染水対策前、対策中および対策後の地下水等の状態を把握するための手法として、様々なモニタリング調査の提案があった。試錐孔を用いたモニタリングとしては、水位・間隙水圧、放射線量などを連続観測する提案があった。その他のモニタリング手法として、地表流、浸透量、土壌の状態、海域における連続観測についての提案があった。	
			606	水位、放射線量		
			407	水位、水質、流速、核種濃度		
			169, 181	ガンマ線		
			718	⁹⁰ Sr、 ¹³⁷ Csモニタリング		
			745	物理探査手法による地下モニタリングの実績紹介		
			767	水位、水温のリアルタイムテレメトリ		
		その他	272	地表流、浸透量、土壌、海洋流出など		
			372	地下水・土壌中の ³ He		
			377, 594	汚染水、放射線測定		
			661	電気探査モニタリング		
			743	リアルタイムモニタリングの実績紹介		
			744	土壌中の核種の自然減衰とモニタリング		
			330, 409	海域におけるモニタリング		

添付書類1 分野別の主な技術提案の総括 [技術分野6: 地下水等の挙動把握]

特に提案をお願いしたい技術		ご提案			是不可能。[[大門刀刃[0]] 2. 20 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	小項目		番号	関連するキーワード	- ご提案いただいた技術の傾向 	専門家レビュー会議によるコメント
X1	774	質量分析	117	分析時間:水溶液15分(>3Bq/L)、土壌8検体3 時間(>5Bq/L)	する方法に加え、質量分析計やチェレンコフ検出器を用いた分析方法が 提案されている。分析時間は、従来の24日と比較して大幅に短縮されて いる提案が多かった。 ・チェレンコフ検出器を使用する場合は 分について注意が必要となる。 ・その他にも、マイクロカラムも用いたi で分析ができる研究室があるが、従来 る研究室も存在する。 ・なお、90Sr分析技術については、開発 数のオプションを維持すべきである。 ・分析要員の確保という視点に立つと、 析はかなり経験が必要とされるが、ICF ている技術なので、比較的容易に要員 できると考えられる。	・提案されている技術に必要な分析時間やコストは、一般的に考えて妥当と考えられるものである。例えば、ICP-MSを用いる90Sr分析方法は、試料の前処理を簡略化しているという点で多くの利点があると考えられる。
		(ICP-MS, TIMS)	177	塩分濃度が低いとICP-MS、高いとβ 線測定		
			182	既存の分析技術を応用		
		シンチレータ(液体、ガス、 プラスティック)	193	エネルギーウインドウ設定で ⁹⁰ Yのみを測定		・チェレンコフ検出器を使用する場合は、試料の塩分濃度などSr以外の成
			209	ガスシンチレータを開発中		分について注意が必要となる。
			624	分析時間:20分以内(>30Bq/L)		・その他にも、マイクロカラムも用いた前処理の迅速化なども実用化されている。これを用いた液体シンチレータによる従来の技術では、3-4時間で分析ができる研究室があるが、従来法では8時間以内の分析に苦労する研究室も存在する
			659	分析時間:12時間(>0.05Bq/L)		
			717	液体シンチレータのノウハウを提供		
	⁹⁰ Sr分析		290, 300	分析時間:100-1000秒(10Bq/L程度)		
		チェレンコフ検出器	540	分析時間:2-3分(2-10Bq/L程度)、1時間 (1Bq/L程度)		・なお、90Sr分析技術については、開発のレベルやニーズを考慮して、複数のオプションを維持すべきである。
			723	90Yのベータ線の連続カウント		- 八七亜号の座位しいる祖もに立つし、父女の女針州フレロンチウナの八
			767	分析時間:20時間(>0.3Bq/L)		析はかなり経験が必要とされるが、ICP-MSは一般の現場等で用いられ
			282	分析時間:0.3-0.5日(0.3Bq/L)		ている技術なので、比較的容易に要員確保ができ、速やかに現場に投入
(2)水質の分			357	分析時間:1日程度(実用化は2015年度)		できると考えられる。
析技術(簡 易・迅速な測		その他	625	分析時間:24時間(>0.1Bq/L)		
定)			749	新型α、β、γ カウンタ		
			309, 311	Sr抽出技術		
			209	ガスシンチレータを開発中	3H分析について、従来から広く使われている液体シンチレータを使用する方法の提案が多かった。分析時間については、イオン交換など試料前	
	³ H分析	シンチレータ(液体、ガス)	290, 300	分析時間:5分(>10000Bq/L)から3時間 (>2Bq/L)	処理の改良によって従来の27時間よりも短縮を図る提案が主であった。 - -	
			473	膜分離式トリチウムモニタ		
			474	イオン交換併用で時間短縮、同時分析		
			492	分析時間:24時間以内。移動ラボ		
			610	イオン交換とスピルオーバー法で分析時間短縮		
			615	分析時間:50分(>10Bq/L)、開発中		
			659	分析時間:4.5時間(>15Bq/L)、移動ラボ		
			717	分析時間:5時間(>60Bq/L)、ノウハウを提供		
		ベータカウンタ	352	分析時間:1分以内。プロトタイプ実証済み		
			624	分析時間:40分		
			767	分析時間:65分、3H Micro Distillation		
		その他	282	分析依頼、分析時間:0.15-0.25日(>370Bq/L)		
	無人掘削	遠隔	244, 448	エアハンマー	従来のような泥水を用いるロータリー掘削ではなく、遠隔操作ができる自 一走式掘削機による泥水を使用しないエアハンマー工法やソニックドリルエー 法が提案されている。 	
			349	バイブレータソニックドリル、二重管掘削		
(3)観測孔設 置技術(迅 速·無人掘 削)			582	リモートコントロール、コンピュータコントロール		
			710	3成分コーン、水圧式コーン試験の無人化		
		ロボット	345	リモートコントロール、ロボット	0 / 7)と本C1 0 C 0 1分。 	
ונדון		コントロールボーリング	451, 709, 767	低線量域に孔口設置		
	迅速掘削		492	エアハンマー		
	汚染混入防止 349		349, 582	二重管掘削		

添付書類1 分野別の主な技術提案の総括 [技術分野6: 地下水等の挙動把握]

特に提案をお願いしたい技術				線 1 おり おり おり おり おり おり おり		
項目	小項目		番号	関連するキーワード	ご提案いただいた技術の傾向	専門家レビュー会議によるコメント
것니	7.7.1	77 / / /	181	物理検層・モニタリングーモデル検証		」 ・データベース化、地理情報システム(GIS)化、地下水流動から核種移行
	地下水流動・核種移行モデリング		199, 246, 302, 428, 481		モデリングの提案が多数あった。中には、地表水と地下水を一体解析・可 視化できるとする提案があった。 ・地下水流動モデルは サイト固有なものが必 響を評価する必要があ ・モデル化については 地層の構造は不均質で る。	まで扱うための優秀な解析モデルが多く提案されている。例えば、解析領域は目的領域より十分に広く設定する、と言ったようなこれらを使ってどのようにモデル化するかが重要である。 ・地下水流動モデルは一般的なものではなく、実際に適用する場を表すサイト固有なものが必要であり、それに基づいて汚染水対策の効果、影
			231	地下水流動場の検証		
			279	局所モデルによる逆解析、トレーサー試験によ る検証		
			302	核種移行予測、凍土状態も再現可能		響を評価する必要がある。
			310, 605	地下水流動、核種移行		 ・モデル化については慎重に検討すべきである。データが少なく、現場の
			319	汚染物質流動解析		地層の構造は不均質で単純ではないことを理解した上で実施すべきであ
			346	汚染物質輸送モデリングパッケージ		る。
			349	地質・水理データより地下水流動・核種移行、掘 削ノウハウ		・いずれにしても、現有のデータを整理し、D/B化し、GIS表示することから 始めるべきである
			406	複数の評価結果を比較・考察		^対
			425	核種移行、海水の流入		・関連するデータへのアクセスを開かれたものとするべきで、異なる遮水 方法が提案された場合にも柔軟に対応でき、可視化に優れており、ス テークホルダーや規制当局との対話に用いることができるモデルが望ま しい。提案された多くのモデルがこれらの要件を満たしていると考えられ
			562	広域、中規模、サイト領域で解析		
			604	地球統計手法		
			661	地質モデル、電気探査、トレーサー試験に基づく モデル		る。 ・地下水の流動と化学組成の把握を十分に行ったうえで、どの対策をとればそれがどのように変化するかを予測することが極めて重要である。この予測の妥当性を確認するためのモニタリングを実施することが必要である。
(4)地下水流			734	遮水壁設置に関連したモデリング		
動・核種移行			737	地下水流動と熱輸送モデル		
解析			199, 481	総合的な地下水管理システム	」既存データの収集、データベースや概念モデルの構築、GISに基づく地 ↓地を視察し、地盤の	
			232, 410, 735	汚染水流動予測シミュレーション		えると、慎重に進めるべきである。常にモニタリングを行い様子を見なが
			259	汚染水対策統合管理システム		
			293	地下水流動、塩淡境界、海洋流出		
			324	遮水壁や海洋流出のシミュレーション		ら遮水を行つのが望ましい。
			325, 530, 739	地下水概念モデル、CMD、SCM(Site Conceptual Models)		
			351	核種移行		
	リスク管理や意思決定までを含めたモデリング	416	短期的・中長期的課題に向けてアドバイス			
		424	総合マネージメント			
			576	広域地下水解析・監視システム		
	634 680 731 733 740 741 地下水化学環境		634	汚染状況の見える化	塩水化によって帯水層内に吸着されていた放射性核種が離脱する可能 性の指摘があった。	
			680	汚染水対策エキスパートシステム		
			731	凍土壁の遮水に関連したモデリング		
			733	汚染水流出リスクに備えるシステムモデル		
			740	核種移行モデリングとリスク評価		
			741	土壌汚染と汚染物質の地下水輸送モデル		
			426	帯水層に吸着されているセシウムの放出		
その他	³ Heによる漏	洩検知	372, 745	³ Hと ³ He濃度	汚染水の漏えいを ³ He分析で検出する提案があった。	