IRID

令和3年度開始 廃炉・汚染水対策事業費補助金 (原子炉格納容器内部詳細調査技術の開発)

2022年度最終報告

2023年6月

技術研究組合 国際廃炉研究開発機構(IRID)

1. 研究の背景と目的

2. 目標

- 3. 実施項目・他事業との関連
- 4. 実施スケジュール
- 5. 実施体制図
- 6. 実施内容
 - 6.1 ペデスタル内部詳細調査計画・開発計画の策定、更新
 - 6.2 ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発
 - 6.3 モックアップ試験の成果
 - 6.4 調査装置及び付帯装置の耐放射線性について
 - 6.5 目標に照らした達成度

1

1. 研究の背景と目的

【本事業の目的】

本事業では、先行事業の成果を基に、ペデスタル内部の詳細状況、特に原子炉圧力容器(以下RPVという)内部調査の下部 アクセス調査工法の成立性を検討する上で重要となる制御棒駆動機構(以下CRDという)開口部からペデスタル内部中心付近 までのペデスタル上方の情報を得るためのアクセス・調査装置及び調査技術の開発を目的とし、以下を実施する。

(1)ペデスタル内部詳細調査計画・開発計画の策定、更新(2)ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発

【本事業の反映先】

本事業で得られた情報(ペデスタル内構造物状況や燃料デブリの分布状況、線量率)は、他PJであるRPV内部調査の下部 アクセスエ法・装置の詳細検討に反映される。また、燃料デブリ取り出し工法・装置の詳細検討にも反映される。

(1)ペデスタル内部詳細調査計画・開発計画の策定、更新

先行事業[※]で策定されたアクセス・調査装置の開発計画とそれを用いた調査計画も参考に、 必要な機能を追加したアクセス・調査装置の開発計画とそれを用いた詳細調査計画を策定 する。さらに、最新の現場情報や内部調査結果等も考慮して、これら計画の継続的な見直し を行い、必要に応じて更新する。

(2)ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発 上記(1)で策定したアクセス・調査装置の開発計画に基づき、先行事業※での検討も参考にし、アクセス・調査装置の設計、製作を行い、調査技術と合わせて工場内検証(単体試験)を行い、内部調査への適用性を確認する。さらに、実機を模擬したモックアップ試験を行い、現場適用性を確認する。

※:平成30年度補正予算「廃炉·汚染水対策事業費補助金

(原子炉格納容器内部詳細調査技術の開発(堆積物対策を前提とした内部詳細調査技術の現場実証))

IRID

2. 目標

既存の技術(2020年度までに終了)を基にペデスタル内部詳細調査に関わる調査・開発計画 およびアクセス・調査装置の開発を行う。

<u>表1 ペデスタル内調査の目標</u>

©International Research Institute for Nuclear Decommissioning

3. 実施項目・他事業との関連

本事業(ペデスタル内調査)と関連事業の調査範囲(イメージ)を下図に示す。本事業は、PCV内部詳細調査 (堆積物)範囲外のペデスタル内を主要調査範囲としている。

PCV内部詳細調査⇒本事業⇒RPV内部調査の順で実施することを想定しており、各成果は次ステップへの Inputとなる。

図3他事業との関連性

※1:原子炉格納容器内部詳細調査技術の開発 (堆積物対策を前提とした内部詳細調査技術の現場実証)

<u>表3 実施工程(2021年度~)</u>

項目			令和3年度	(2021年度)		令和4年度(2022年度) 令和5年)			令和5年度		
		1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	(2023年度)以降	
マスタースケジュ	ール										
	■ 一点鎖線で示す作業は	本補助事業範囲外			▽(中間報告)	▽(中間報告)			▽	最終報告)
 		自主 [:]	事業 PCV内部	郵詳細調査(━━━ ■	堆積物PJ) —— –					作業訓練 ————————————————————————————————————	
	1. ペデスタル内部詳細	(i)調査計画の策定	調査計画	の策定							1
	調査計画・開発計画の策 定, 更新 	(ii)開発計画の策定	開発計画	の策定							
		(i)アクセス・調査装置 の詳細設計、製作、単体 試験	アクセス・	調査装置、言	調査技術の言	^{羊細設計}			8	*	
ペデスタルCRD開 ロ部からのペデス タル内部詳細調査 技術の開発(研究 開発)					アクセス・訓	査装置の夢	作	工場	内検証(単体	₩試験)	
	2. ヘテスタル内部詳細 調査のためのアクセス・ 調査装置及び調査技術 の開発	(ii)モックアップ試験					モックアップ	試験設備設	計・製作 モックア	ップ試験	
		(iii)現場実証(現場調 査)の計画							現場実証(現場調査)の	D計画策定

6

5. 実施体制図

本事業の実施体制を以下に示す。

技術研究組合 構機発開究研炉廃際国(本部) 〇 全体計画の策定と技術統括 〇 技術開発の進捗などの技術管理の とりまとめ		東京電カホールディングス株式会社 〇現場適用性の観点での諸調整
日立GEニュークリア・エナジー株式会社		連携する開発プロジェクトチーム
 (1)ペデスタル内部詳細調査計画・開発計画 の策定 (2)ペデスタル内部詳細調査のためのアクセス・ 調査装置及び調査技術の開発 	連携	原子炉格納容器内部詳細調査技術の開発 (X-6ペネトレーションを用いた内部詳細調 査技術の現場実証)
		燃料デブリ・炉内構造物の取り出しに向け た技術の開発
		燃料デブリ・炉内構造物の取り出し規模 の更なる拡大に向けた技術の開発
		燃料デブリ収納・移送・保管技術の開発
		燃料デブリの性状把握のための分析・推定 技術の開発
		原子炉圧力容器内部調査技術の開発
図4 実施体制		固体廃棄物の処理・処分に関する研究 開発

6.1 ペデスタル内部詳細調査計画・開発計画の策定、更新

アクセス・調査装置がX-2ペネ~CRD開口まで移動し、ペデスタル内調査を実施するための概念 検討を先行事業で実施した。この成果を基に、本事業ではペデスタル内調査計画の策定を行うととも に、アクセス・調査装置等の開発計画を策定し、必要に応じて更新する。

6.1 ペデスタル内部詳細計画・開発計画の策定、更新

先行事業での調査計画・開発計画検討成果を基に、本事業では、以下に示す調査計画・開発計画の 策定、更新を行う。

<u>表4</u>	調査計画・開発計画の策定	

検討項目	検討内容	検討成果
調査計画の策定	ペデスタル内 調査計画の策 定	 ①調査ニーズによる調査目標の設定、更新 ②PCV内およびペデスタル内設計条件(温度、湿度、放射線、 CRD開口寸法、干渉物の有無、寸法条件等)確認 ③ペデスタル内調査内容(映像、放射線量、点群データ他)確認 ④上記②③に基づくペデスタル内調査計画の策定、更新
	調査装置、設 備、機器全体 計画	 ①アクセス・調査装置に必要な技術要件、設計仕様の抽出 ②調査に必要な支援装置(ケーブル送り、装置インストール 装置、シールボックス等)の抽出、および設計仕様検討
開発計画の策定	調査装置、調 査技術の開発	 ①装置開発内容 ・先行事業試作試験成果を基に装置詳細設計 ・単体試験、モックアップ試験内容検討、試験設備概要検討 ②装置開発工程 ・装置製作工程、単体試験、モックアップ試験工程 ③装置開発に掛かるリスクアセスメント
	現場実証(現地 調査)の計画	 ①装置類機能要求計画(バウンダリ機能、非常時回収機能、遮 へい機能、防塵・防水機能、遠隔操作機能等) ②ペデスタル内調査現地作業計画(概略日数、作業員数等)

6.1 ペデスタル内部詳細調査計画・開発計画の策定、更新

≪調査ニーズによる調査目標の設定≫

先行事業で検討した調査目標及び成果の用途を以下に示す。本事業では、必要により下表の内容 を更新し、調査目標を最終設定する。

調査箇所	調査項目	調査目標(案)	成果の用途
CRD開口、 CRDレール上、X-6ペネ内側	目視観察 放射線(γ)	・干渉物有無 ・ペデスタル内への進入可否 ・放射線量の確認	・横アクセスエ法成立性の検討 ・燃料デブリ取り出し装置の設計
ペデスタル内CRD交換装置	目視観察 放射線(γ) 点群データ	・プラットホームの損傷状況 ・干渉物・落下物の確認 ・放射線量の確認 ・3次元構造の把握	・燃料デブリ取り出し装置の設計
ペデスタル内上部	目視観察 放射線(γ) 点群データ	・RPV底部の損傷状況の確認 ・放射線量の確認 ・3次元構造の把握	・燃料デブリ取り出し装置の設計 ・RPV内部調査下部アクセス成立性確認
ペデスタル内下部(気中)	目視観察 放射線(γ) 点群データ	・干渉物・落下物の確認 ・放射線量の確認 ・3次元構造の把握	・燃料デブリ取り出し装置の設計

表5 調査目標及び成果の用途

- 6. 実施内容
 - 6.1 ペデスタル内部詳細調査計画・開発計画の策定、更新

《ペデスタル内の調査イメージ(1/2)》

先行事業でペデスタル内の状況を把握できる、以下の画像情報を得られることを確認した。 ①CRD系の破損状況、燃料デブリの付着状況、RPV底部までの開口状態【図6,7】 ②滞留水の水面【図8】

本事業では、映像の他、線量、点群データ等を取得する技術を開発する。

RID

6.1 ペデスタル内部詳細調査計画・開発計画の策定、更新

《ペデスタル内の調査イメージ(2/2)》

ペデスタル内調査では、伸長ロッド先端のパンチルト カメラによりペデスタル内全方位の映像を取得する。 また、点群データを測定するセンサを搭載し、3次元的な 構造情報を取得する。

図10ペデスタル内調査装置の視認可能範囲(A矢視/ペデスタル上部)

©International Research Institute for Nuclear Decommissioning

12

6.2 ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発

《アクセス・調査装置及び調査技術開発の実施概要》

先行事業でのアクセス・調査装置の概念検討成果を基に、本事業では以下に示すアクセス・調査装 置及び調査技術開発について実施していく。 表6

検討項目	検討内容	実施概要
詳細設計、製作	設計仕様	先行補助事業での試作試験結果を基に現場実証に用いる全ての装置に対して、要求仕様 (性能、信頼性、非常回収、汚染対策等)が満足する装置設計・製作を行う。
工場内検証 (単体試験)	検証項目	現場実証に用いる全ての装置に対して、要求仕様(性能、信頼性、非常回収、汚染対策 等)を満足していることを工場内検証(単体試験)で確認する。その上で、必要な装置改善 を行う。
モックアップ試験	試験設備	ペデスタル内調査での作業員・装置立入エリアをフルスケールで製作する。 (長さ20m×幅10m×高さ10m程度)
	モックアップ 試験	実機条件を模擬して実機同様の手順でペデスタル内詳細調査が実施できることを確認す る。作業員は、10~20名超を想定(先行補助事業実績)

- 6. 実施内容
 - 6.2 ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発 各装置概要を以下に示す。 表7 ペデスタル内調査装置の構成イメージ

©International Research Institute for Nuclear Decommissioning

6.2 ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発

先行事業でペデスタル内調査装置の要素試作を実施し、機能検証試験 を行った。本事業では、実機向け装置の詳細設計・製作を行う。

		ペデスタル
装置の部位	要求仕様(機能)	
走行部	・残置B1調査装置を乗越え、CRD開口付近まで到達可	Bitter
伸長ロッド	・伸長ロッド(エア式)を、5m伸長、収縮可 ・伸長ロッド長さを制御可 ・ケーブルを伸長ロッド内に内包	83調査※ ROV用穴 走行ルート
調査計器	・パンチルト式のカメラで、ペデスタル内構造物や燃料デブリを調査 ・線量率を測定する放射線センサを搭載し、ペデスタル内の線量率を測定 ・点群データ取得センサ(デプスカメラ)による3次元の点群データ計測	X-2~*

CRD開口

6.2 ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発

先行事業でペデスタル内を暗所模擬し、構造物や燃料デブリ模擬体を視認が可能であることを確認済。 本事業では、ペデスタル内の映像、線量率等のデータ取得についての検討を実施する。

表9 ペデスタル内調査装置の映像取得イメージ 映像取得範囲(試験体写真) 試験映像取得例(先行研究結果) ペデスタル内ヘカメラを挿入し撮影(A、B視野) 暗所でも鮮明に構造物・燃料デブリ模擬体の視認が可能 カメラ 調杳裝置 燃料デブリ模擬体 A視野 調査装置カメラ映像(A視野での映像) 燃料デブリ 模擬体 CRD模擬体 想定水位レベル (土嚢の高さ) 想定水位レベル (土嚢の高さ) 調査装置カメラ映像(B視野での映像) ペデスタル内 試験模擬体

6.2 ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発

先行事業でペデスタル内調査付帯装置についての要素試作を実施し、機能検証試験を行った。 本事業では、ペデスタル調査付帯装置の詳細設計・製作を行う。

No.		装置	前提条件
1	穴カバー設置装置	1 穴カバー	・遠隔操作でROV用穴への穴カバーの遠隔設置・回収が 可能であること ・穴カバー上で調査装置が走行可能であること
2	インストール装置	調査装置	・遠隔操作で調査装置をX-2ペネトレーションから挿入し、 PCV内1階グレーチングへのインストール・回収が可能で あること
3	ケーブル送り装置	ケーブル把持・送り部	・遠隔操作で調査装置のケーブル把持・移動(ケーブル ルートの修正含む)が可能であること ・遠隔自動での調査装置のケーブル送り(ケーブル引っ 掛かり解除含む)が可能であること ・搭載カメラにて調査装置の動作や周辺状況の監視が可 能であること
4	シールボックス (ケーブルドラム含)		・調査装置他のPCVバウンダリ保持が可能であること ・エアロック室に搬入・設置可能な寸法であること
5	監視カメラ (チャンバ含)	ケーフ [・] ルト [・] ラム <u> ち</u> ーフ [・] ルト [・] ラム <u> ち</u> ールホ [・] ックス <u> ち</u> ールホ [・] ックス	・200A(または350A)から挿入し、PCV内の各種作業監視 ができること ・PCVバウンダリ保持が可能であり、エアロック室に搬入・ 設置可能な寸法であること

表10 ペデスタル内調査付帯装置の装置仕様(1/2)

6.2 ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発

装置 前提条件 No. 可動範囲 310 1448 ・200Aから挿入し、調査装置走行箇所周辺の障害物(鉛 毛マット)除去が可能であること 鉛毛マット除去 6 ・遠隔操作で調査装置をX-2ペネトレーションから挿入し、 装置 PCV内1階グレーチングへのインストール・回収が可能で 347 あること 534 手摺 338 1233.5 可動範囲 手摺切断装置 手摺 ・PCV内エアロック内扉前の250A前手摺切断が可能であ ること 手摺切断装置 ・遠隔操作で調査装置をX-2ペネトレーションから挿入し、 7 PCV内1階グレーチングへのインストール・回収が可能で あること

表11 ペデスタル内調査付帯装置の装置仕様(2/2)

©International Research Institute for Nuclear Decommissioning

6.2 ペデスタル内部詳細調査のためのアクセス・調査装置及び調査技術の開発

2022年度の進捗状況を以下に示す。工場内検証試験(6.2.1項参照)、モックアップ試験(6.2.2項参照)を実施した。

表12 ペデスタル内調査装置他開発状況

凡例 ● 方式決定•改善 — : 既開発品活用

No.19

							2000204474713
No	林墨	要求仕様		21年度	22年度(2022.4~2022.9月)	22年度(2022.10~2023.2月)	会昭百
NU.	夜里			設計·製作	設計・製作・試験	モックアップ試験	D mr A
			装置の往復走行	●(追加改善)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	6.2.3~4項
		伸長	ロッド	●(追加確認試験)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	0.05.075
	ペデスタル内調杏	複合	ケーブル	●(構造検討·試作,確認試験)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	0.2.3~0項
1	装置		カメラ	一(B2調査実績有)	一(B2調査実績有)	—	_
		調 査 計	点群テ゚ータセンサ【調査装置2号機】	〇(方式選定·要素試験)	●(方式選定完了・試験・ 装置実装検討)	●(モックアップ試験で確認)	6.2.7項
		器	放射線センサ(線量計)【調査装置1号機】	○(要素試験・ケープル選定)	●(試験·装置実装検討)	●(モックアップ試験で確認)	6.2.8項
2	穴カバー設置装置	1階グレーチングROV用穴へ閉止カバー設置・ 回収		●(追加改善)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	6.2.9~10項
3	調査装置用インストー ル装置	調査装置をX-2ペネ~PCV内1階ゲレーチングへ 挿入・回収		●(追加改善)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	6.2.11~12項
4	ケーブル送り装置	調査装置のケーブル修正処理、残置B1装置 踏破時のアシスト、搭載カメラでの視野確保		●(実機用複合ケーブルでの確認)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	6.2.13~14項
5	シールボックス (ケーブルドラム含)	調査装置他のPCVバウンダリ保持		〇(構造検討・製作着手)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	6.2.15~16項
6	監視カメラ(洗浄機能 付)	実機調査時に必要な付帯設備		●(構造検討·改善·確認試験)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	6.2.17~18項
7	鉛毛マット除去装置	装置インストール箇所周辺の鉛毛マット除去		O(計画·検討)	●(工場内検証試験で確認)	●(モックアップ試験で確認)	6.2.19~20項
8	手摺切断装置	2504	Aインストール箇所周辺の手摺切断	―(手摺切断無で計画)	●(検討·要素試験)	●(モックアップ試験で確認)	6.2.21項

6.2.1 工場内検証試験の実施

調査装置等の性能検証や、ペデスタル内調査作業の作業手順把握を目的に実機模擬設備を用いて工場内検証試験を行った。工場内検証試験確認項目を以下に示す。

	試験確認内容	試験	確認項目	工場内検証試験 (7/4~7/29に実施済)
		搬出入		0
準備作業		バウンダリ		0
	エマロック安内をの		作業装備	-
	エブロック 至内への 継 哭 搬 山 入 仙	被ばく対策	汚染対策	-
	(茂 奋 掀 工 人 他		遠隔通信	0
		作業更領	作業時間	-
		11-未女 帜	作業人員	-
			装置投入・回収	0
		州台班家	走行・設置	○(課題有)
	ペデスタル内調査装置・	工月ビ7年 100	作業手順	0
	調査付帯装置性能		カメラ監視	0
		リマク対策	リスク抽出	0
		リハノ N 尿	対策検証	〇 (一部)
調査作業		調査装置への搭載	載	0
	調査計器実機環境	環境確認(霧、	水滴)	0
	(放射線)	ノイズ確認	調査装置他組合せ	0
			DG発電機影響	_
	調本計哭宝燈帶培	調査装置への搭	載	_
	一	環境確認(霧、	水滴、霧)	-
		ノイズ確認	調査装置他組合せ	-

表13 ペデスタル内調査 工場内検証試験確認項目

6.2.2 モックアップ試験の実施

(1) モックアップ試験確認項目

調査装置等の性能検証および工場内検証試験(2022年7月実施)で抽出された課題(次紙以降)確認、 ペデスタル内調査作業の作業要領・必要人員の把握を目的に、実機模擬設備を用いてモックアップ 試験を行った。試験確認項目を以下に示す。

試験確認内容		試験	確認項目	工場内検証試験 (7/4~7/29に実施済)	モックアップ試験 (10/17~11/22に実施)
		搬出入		0	○(改良検証)
準備作業		バウンダリ		0	0
	エアロック室内をの		作業装備	-	0
	エアロック 至内への 機 哭 搬 出 λ 他	被ばく対策	汚染対策	_	0
			遠隔通信	0	0
		作業更領	作業時間	_	0
		旧未女頃	作業人員	_	0
			装置投入・回収	0	○(改良検証)
	ペデスタル内調査装置・ 調査付帯装置性能	性能確認	走行・設置	○ (課題有)	○(改良検証)
			作業手順	0	〇(見直し検証)
			カメラ監視	0	0
		リマク対策	リスク抽出	0	0
		リスノ対衆	対策検証	○ (一部)	〇(追加)
調査作業		調査装置への搭	載	0	○(改良検証)
	調査計器実機環境	環境確認(霧、	水滴)	0	○(改良検証)
	(放射線)	ノイブ碇羽	調査装置他組合せ	0	0
			DG発電機影響	_	0
	调本計架宝烨理培	調査装置への搭	 載	_	0
		環境確認(霧、	水滴、霧)	_	0
		ノイズ確認	調査装置他組合せ	_	0

表14 ペデスタル内調査 モックアップ試験確認項目

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(1/11)

工場内検証試験(2022年7月実施)で抽出された装置・作業要領の課題について、モックアップ試験で改善の 成果を検証した。

表15 工場内検証試験時に抽出された内容と対応結果(調査装置(1/2))

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
1		バック走行時(復路) における残置B1調 査装置踏破性能向 上及び干渉防止対 策	【改善点】 ①調査装置バック走行における残置B1調査装置との干渉防止対策 として後方ガイドの幅寸法を広くした。 ②踏破性向上の為、残置B1調査装置の高さにガイドの高さを合わせた。 【結果】 残置B1調査装置に干渉することが無く、スムーズに乗越えが可能と なった。	後方ガイド
2	調査装置	鉛毛マットの踏破性 能向上のため、調 査装置下部周りの 改善	【改善点】 鉛毛マットの引掛り対策としてワイヤー固定部の高さを上げた。 また、下部カバーを追加しLED照明をカバー内に収めた。 【結果】 鉛毛マットに引っ掛かること無く、スムーズに乗越えが可能となった。	下部カバー 日本
3		伸長ロッドの起伏角 度を定量的に確認 可能とするための 改善	【改善点】 伸長ロッドの起伏角度を確認する為、モニタ用(後部カメラ映像用)に アクリル製のスケールを準備した。 【結果】 カメラ映像とスケールを見ながらロッド起伏角度の表示が可能となった。	起伏角度確認用 スケール

IRID

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(2/11)

表16 工場内検証試験時に抽出された内容と対応結果(調査装置(2/2))

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
4	調木壮平	伸長ロッド起伏角度 が小さい時に、伸長 ロッド先端カメラと 調査装置本体の干 渉回避	【改善点】 ヒンジロック用シリンダを装置内側から外側へ位置変更し、ロッドと のスキマを大きくした。 【結果】 伸長ロッド起伏角度が小さい時に、先端カメラと調査装置本体との 干渉が無くなった。	ヒンジロック用 シリンダ
5	,調査衣直	伸長ロッド先端の調 査用カメラ映像視 認性向上のため、 映像を明るくする改 善	【改善点】 LED照明用コントローラを改造し、LED照明用電流値を高出力にし た。(20mA⇒30mA) 【結果】 カメラ映像が明るくなり視認性が向上した。	調査用カメラ コントローラ

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(3/11)

表17 工場内検証試験時に抽出された内容と対応結果(調査装置ケーブルドラム)

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
6		ドラム監視時の作業 性および視認性向上 のため、ドラム内監視 小窓のライト位置の改 善	【改善点】 作業性および視認性向上の為、小窓部のライトを取り外した。 【結果】 ドラム内の監視が容易となり、作業性が向上した。	小窓部ライト 取外し済
7	調査装置 ケーブル ドラム	ドラム内監視カメラ設 置箇所の光反射防止 カメラ用カバー追加	【改善点】 光反射対策としてドラム監視カメラ(2箇所)にカバーを追加した。 【結果】 カメラ映像への光反射が無くなり、カメラ映像の視認性が向上した。	カメラ用 カバー
8		ドラムを回転させる際 のエア・水圧チューブ の取扱い改善	【改善点】 エア・水圧チューブの取扱いを改善するため、ケーブルドラム側 ヘカプラを追加した。 【結果】 ドラムを回転させる際にエア・水圧チューブ着脱が容易になり、 ドラム回転作業性が向上した。	カプラ

No.25

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(4/11)

<u>表18 工場内検証試験時に抽出された内容と対応結果(調査装置ケーブルドラム用台車)</u>

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
9	調査装置 ケーブル	ケーブルドラム・シールボッ クス切り離し時のα汚染対 策	【改善点】 ケーブルドラム・シールボックス切り離し時の α 対策としてド ラム開放部の養生シートを準備した。 【結果】 養生シートにより、ドラム開放部から放射性汚染が無くなっ た。	養生シート
10	ドラム用 搬入台車	ケーブルドラムを搬入台車 に着座させる際の作業性 改善	【改善点】 ケーブルドラムを台車に着座させる際の作業性向上のため、 調査装置用ストッパを取り外した。 【結果】 着座の際に、調査装置が引っ掛かることが無くなり、作業 性が向上した。	調査装置用ストッパ 取り外し済

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(5/11)

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
1		ケーブルのコネクタ 抜け防止対策	【改善点・結果】 ケーブルコネクタを抜け防止コネクタに仕様変更し、絶縁耐熱 テープで更に抜け防止を行った	コネクタ 322/13/18
2	屈曲式 ドームカ メラ	チャンバーの位置 が200A、350Aに変 更となるため、床固 定アンカー位置変 更	【改善点・結果】 350A用のアンカーブラケットを製作し、チャンパ位置を 200A,350Aで入れ替えても各専用のアンカーブラケットを使用 するようにした	350A用アンカーブラケット 2022
3		屈曲式ドームカメラ の視認性向上検討	【改善点・結果】 ドームカメラ画角に映り込んでいた支柱を撤去し、カメラ視認性 の向上図った(LED取付ブラケットにより強度も確保)	LED取付ブラケット

<u>表19 工場内検証試験時に抽出された内容と対応結果(屈曲ドームカメラ)</u>

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(6/11)

表20 工場内検証試験時に抽出された内容と対応結果(調査装置シールボックス)

No	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
4		調査装置シールボックスとケーブ ルドラムの組付け作業性改善の ため、シールボックス側にゴム パッキンを取付けた状態で搬入 できるようにする	【改善点・結果】 あらかじめシールボックスフランジ面にゴムパッキンを取 り付けるようにした	ゴムパッキン
5	調査装置	調査装置回収時のエアチューブ 断線を防止するため、エアチュー ブルートの見直し	【改善点・結果】 インストール装置のベースプレートにマウントベースを取 り付け、エアチューブが回収時外側に膨らんでローラと移 動トレーに挟まれないようにした	ベースプレート マウントベース エアチューブ
6	ボックス	調査装置回収時に調査装置後 方がインストール装置と衝突して 損傷することを防ぐため、緩衝材 の取付	【改善点・結果】 調査装置の損傷防止のために、干渉する箇所に緩衝材 を取り付けた	緩衝材
7		ケーブルドラム・シールボックス 切り離し時のα汚染対策	【改善点・結果】 α汚染対策として、シールボックス開口部用に樹脂蓋を 準備した	樹脂蓋

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(7/11)

<u>表21 工場内検証試験時に抽出された内容と対応結果(ケーブル送り装置、シールボックス)</u>

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
8	ケーブル 送り装置	作業時のケーブル 接続用中継ボック ス取扱性改善	【改善点・結果】 ケーブルドラムのチェーンカバーに、中継ボックスを置くことが できる台座を設置した	中継ボックス 日座 8022710/19
9	ケーブル	ポール操作がしや すいようにシール ボックス内のケーブ ルルート見直	【改善点・結果】 ケーブルドラムのピンチローラ位置を変更し操作性の向上を 図る	
10	送り装置 シール ボックス	ケーブル送り装置 回収作業効率向上	【改善点・結果】 スライドベースの干渉しているリブを切断し、ケーブル送り装置 回収時に干渉しないようにした	עליין איז

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(8/11)

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
11	1	輸送時のエアホース損 傷を防止するため、エ アホースの曲がり部の 半径を大きくし、根本部 分はスパイラルチュー ブで補強する等対策が 必要	【改善点・結果】 エアチューブをスパイラルチューブで補強し、絶縁耐熱テー プでスパイラルチューブがはずれないように固定した	チューブ補強部
12	穴カバー 設置装置	穴カバーと穴カバー設 置装置の位置合わせ を容易にする	【改善点・結果】 穴カバー回収時に目安となるマーキングを穴カバー設置装 置と穴カバーに追加した	マーキング
13		ガイドパイプ内で穴カ バー設置装置の位相 がずれた場合でも、 穴カバーが回収できる 構造にする必要あり	【改善点・結果】 テーパ部の材質をステンレスに変更し、位相がずれた状態 でもガイドパイプにテーパ部が接触して、ガイドパイプに穴 カバーが沿うようにした	テーパ部

表22 工場内検証試験時に抽出された内容と対応結果(穴カバー設置装置)

No.30

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(9/11)

表23 工場内検証試験時に抽出された内容と対応結果(穴カバ	—)
-------------------------------	----

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
14		穴カバー回収時の位置合 わせを容易にするため、穴 カバー上面にピン位置の マーキング	【改善点・結果】 穴カバー上にピン位置のマーキングを追加した	ピン位置マーキング
15		ガイドパイプ内への穴カ バー回収性能向上	【改善点・結果】 回収性能向上のために穴カバーの縁のテーパ形状を見直し、 テーパの角度を広げた	マーパ部

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(10/11)

表24 工場内検証試験時に抽出された内容と対応結果(鉛毛マット除去装置、ポール回転治具)

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
16	鉛毛マット除 去装置	鉛毛マット除去装置アー ム強度向上、操作ポール へのマーキングを行う	【改善点・結果】 鉛毛マット除去装置アームひねり軸の強度をアップし、 初期位置が分かるようにポールにマーキングをした	<u>強度</u> アップ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
17	ポール回転 治具	ポール回転操作の作業 性を向上させる	【改善点・結果】 ポール回転治具を3連タイプにし、操作ポール(φ50) の回転力を向上させた	

6.2.2 モックアップ試験の実施

(2) 工場内検証試験で抽出された課題(11/11)

<u>表25 工場内検証試験時に抽出された内容と対応結果(200Aチャンバ用作業台、ケーブルカッター収納用ボックス)</u>

No.	対象	課題の抽出	モックアップ試験での検証結果	改善箇所
18	200Aのチャン バ上作業台	エアロック室内狭隘部での 作業性を改善するため、小 型の作業台を準備	【改善点・結果】 小型化した200Aチャンバ用足場を製作した	
19	ケーブルカッ ター収納用 ボックス	気密蓋の取付性向上のた め、ケーブルカッター収納 ボックスの形状見直し	【改善点・結果】 ケーブルカッター用グローブボックスの フランジに15mmのスペーサを追加した	

6. 実施内容 6.2.2 モックアップ試験の実施

(3) 試験設備の改良

実機寸法を摸擬した試験設備で工場内検証試験を行った。模擬範囲はR/B西側通路、エアロック室、X2ペネ(アクセス ルート)、PCV内1階グレーチング、ペデスタル内とした。

なお、現地写真および震災前の作業従事者の意見を基に、一部見直しを行った(※1)。

6.2.2 モックアップ試験の実施

(4) 現地作業とモックアップ試験環境の比較

現地作業とモックアップ試験環境の比較を以下に示す。モックアップ試験では可能な限り実機作業の 環境を摸擬した。

項目	実機作業	モックアップ試験
通信設備	ケーブル長60m (大物搬入口2階〜エアロック室)	〇(現地同様の通信設備を使用)
オペレーション	大物搬入口2階	〇(指示室を隔離し、作業者はモニタで監視)
作業時間	未定	-各種作業を計測
班体制	未定	- 各種作業で必要人員検証
汚染区分	レッドゾーン +α汚染区域	〇(α 汚染ハウス設置)
作業時間/日	2~4時間	×6時間程度 モックアップ試験工程合理化のために模擬せず。
吊搬設備	門型クレーン	〇(現地同様)
西側通路運搬	スロープ	〇(現地同様)
電源	仮設分電盤、DG	○(常設分電盤、DG)

表26 モックアップ試験と現地作業比較

6. 実施内容 6.2.2 モックアップ試験の実施

(5)ペデスタル内調査の指示室でのオペレーション 調査装置の遠隔監視、装置制御は、指示室を設置し現地同様の通信設備を用いた。

ケーブルト・ラム 確認カメラ映像 <u>図20 モニタ1映像</u>

ケープルト・ラム内 カメラ映像

調査装置左前方

調査装置ロッド 伸長量カメラ映像

調査装置ロッド

No.35

図21 モニタ2映像

図19 指示室での操作・監視(モックアップ試験)

6.2.3 調査装置往復走行の工場内検証試験状況

(1)調査装置の往路(X-2ペネ~残置B1調査装置~CRD開口)走行時の工場内検証試験結果を以下に 示す。

試験結果 試験項目 試験内容 調査装置の 現地環境を模擬した試験 ・ケーブル送り装置のカメラ及び調査装置のカメラ映像で状況を確認しながら進める ことで、往路走行可能 設備にて調査装置往路走 往路走行試 行(残置B1調査装置乗越 ケーブルが引っ掛かった際でも、ケーブル送り装置で解除可能 験(前進走 含)時の動作及びケーブル Ο ・ケーブル送り装置でのケーブル跨ぎ、整線可能(ケーブル跨ぎ動作の詳細は6.2.13項参照) 行) ·残置B1調査装置(模擬体)乗越可能(往路:前進走行) 挙動を確認する。 【調査装置は1機目を使用】 ・残置B1調査装置が水滴で濡れた状態(実機状況を想定)でも乗越え可能 ⇒MU試験では実機を用いた乗越確認および調査装置2機目での試験を実施 【ケーブル整線状況】 【ケーブル解除状況】 【残置B1装置乗越状況】 ケーブル送り装置 ケーブル送り装置 調査装置 X-2ペネ直下 ケーブル送り装置のカメラ 輩浩物への 残置B1調杳装置 (模擬体) ケーブル送り装置のカメラ 映像(干渉解除前) 調査装置複合ケーブル 調査装置複合ケーブルをケーブ 調杳装置 ケーブル送り装置のカメラ ル送り装置で跨ぎ、整線 構造物への干渉解除 映像(干渉解除後)

©International Research Institute for Nuclear Decommissioning

No.36

凡例 ○:結果良、△:課題有

表27 往路走行試験結果

6.2.3 調査装置往復走行の工場内検証試験状況

(2)調査装置の復路(X-2ペネ~残置B1調査装置~CRD開口)走行時の工場内検証試験結果を以下に示す。

	<u></u>							
試験項目	試験内容		試験結果					
調査装置の復路走行 試験(バック走行)	現地環境を模擬した試験設備にて 調査装置復路走行(残置B1調査 装置乗越含)時の動作及びケーブ ル挙動を確認する。 【調査装置は1機目を使用】		 ・バック走行での復路乗越時、残置の干渉(①下回り部品で吊上げ用 渉)があり、走行ルートによってはす (※1) ⇒調査装置の改善を行い、モックフ ・上記以外の復路走行性能は問題 走行で移動可能) 	.B1調査装置と本調査装置と 金具の干渉②後方ガイドの干 長越不可の場合があった <mark>マップ試験で検証する。</mark> 無し(X-2ペネ付近までバック				
【パック走行での残置B1調査装 調査装置 「調査装置」であっていた。 「読査装置」では、 「読査を表示」の表示の表示の表示の表示の表示の表示の表示の表示の表示の表示の表示の表示の表示の	E 置乗越状況】	·※1)于渉	<image/>	調査装置 調査装置 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・				

表28 復路走行試験結果

凡例 ○:結果良、△:課題有

37

(1)調査装置構成(1/2機目比較)
 調査装置構成等を以下に示す。モックアップ試験では調査装置2機目を主に使用し試験を実施した。
 (工場内検証試験では調査装置1機目を使用)

表29 調査装置構成(1機目/2機目)

	調査装置1機目		調査装置2機目
調査計器	カメラ(先端)+放射線センサ(線量計)	調査計器	カメラ(先端)+点群データセンサ(デプスカメラ)
先端重量	約970g (カメラ等:約570g+放射線センサ:約400g)	先端重量	約920g (カメラ等:約570g+点群データセンサ・LAN変換器:約130g +おもり:220g))
	走行部(クローラ)、伸長	ロッド、カメラ	(先端)は共通
(共通)カメラ			点群データセンサ 【共通】伸長ロッド 【共通】伸長ロッド ・

©International Research Institute for Nuclear Decommissioning

(2) 調査装置の往路(X-2ペネ~残置B1調査装置~CRD開口)走行

表30 往路走行試験結果(1/2)

凡例 ○:結果良、△:課題有

©International Research Institute for Nuclear Decommissioning

No.40

			<u>表31 往路走行試験結果(2/2)</u>	凡例 ○:結果良、△:課題有
試験項目	試験内容		試験結果	
調査装置の 往路走行試 験(前進走 行)	現地環境を模擬した試 験設備にて調査装置 往路走行(残置B1調査 装置乗越含)時の動作 及びケーブル挙動を確 認する。	0	・残置B1調査装置(実機) [※] 乗越可能(往路:前進走行)⇒ 験時と同等の踏破性を確認、残置B1調査装置(実機)でも 残置B1調査装置(実機)のカメラ部等変形・破損は無かっ 損によるケーブル引っ掛かり等のリスクは少ないと推定で ・リスク対策(有識者より走行ルート上のケドメが無い可能 い状態での走行確認を行った⇒走行時に調査装置及び調 ら落下する可能性があるため、走行時により慎重に作業で	援置B1調査装置(模擬体)での試 か踏破性に影響無であった。なお、 たため、現地作業時に変形・破 きる。 性有との意見)として、ケドメが無 間査装置複合ケーブルが開口か を行う必要有 ※・残置B1調査装置と同じ装置
【残置B1調査装置(実機)乗越状況】 「「「「」」」」」 「「」」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 <th></th> <th><complex-block></complex-block></th> <th></th>			<complex-block></complex-block>	

©International Research Institute for Nuclear Decommissioning

40

V.

(2)調査装置の復路(X-2ペネ~残置B1調査装置~CRD開口)走行

表32 復路走行試験結果

凡例 ○:結果良、△:課題有

試験項目	試験内容	試験結果
調査装置の復路走行 試験(バック走行)	現地環境を模擬した試験設備にて 調査装置復路走行(残置B1調査 装置乗越含)時の動作及びケーブ ル挙動を確認する。 【調査装置は2機目を使用】 (工場内検証試験は1機目)	 ・工場内検証試験ではバック走行での復路乗越時、残置B1調査装置と本調査装置との干渉があり乗越不可の場合があった ⇒調査装置の改善(①前方クローラベルト形状をブロック千鳥状に変更し斜め方向での牽引力向上、②左後方ガイドの厚みを薄くし左右ガイドが均一に当たることで乗越時の横滑り防止、③底面の突起除去)により、確実な乗越が可能となった。また、残置B1調査装置(実機)でも同等の踏破性を確認した。
【バック走行での残置B1調査装 乗越状況】 「「「「」」」」 「「」」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 <td>講 査(模擬体) 【残置B1調査装置(実機)</td> <td>【改善内容】「ひ善内容】「前方クローラベルト形状をブロック 方鳥状に変更することで、斜め方向で の牽引力が向上(150->320K)①前方クローラベルト形状をブロック 方鳥状に変更することで、斜め方向で の牽引力が向上(150->320K)①①①①①②⑦⑦</td>	講 査(模擬体) 【残置B1調査装置(実機)	【改善内容】「ひ善内容】「前方クローラベルト形状をブロック 方鳥状に変更することで、斜め方向で の牽引力が向上(150->320K)①前方クローラベルト形状をブロック 方鳥状に変更することで、斜め方向で の牽引力が向上(150->320K)①①①①①②⑦⑦

IRID

©International Research Institute for Nuclear Decommissioning

6.2.5 伸長ロッド(複合ケーブル含)の工場内検証試験状況

(1)調査装置の伸長ロッドでの調査状況について、工場内検証試験結果を以下に示す。

(伸長ロッドの伸縮は、①残置B1調査装置前からの伸縮、②CRD開口への伸縮の2回で計画)

表33 伸長ロッドの伸縮確認試験結果

凡例 ○:結果良、△:課題有

No.42

試験項目	試験内容		試験結果
伸長ロッド の伸縮確 認試験	挿入確認及び視認範囲の確認 ①残置B1調査装置前のロッド 伸長 ②CRD開ロへのロッド伸長 【調査装置は1機目(※1)を使用】 (※1)カメラ等:約570g+放射線センサ:約400g	0	 ①B1残置装置前にロッドを5m伸長(角度約25°)することにより、CRD開口、 梯子周辺の視認が可能。 ②CRD開口へのロッド伸長は、カメラ映像でレーザポインタの位置を確認 しながらロッドをペデスタル内に伸長可能。この際、干渉物であるの梯 子の間からのロッド伸長(角度約20°)が可能であることが確認できた。 ⇒今後MU試験では調査装置2号機での試験を行う
【①B1残置装置前 残置 B1調査装置 調査装 B1調査装置 の の の ド先端力	前のロッド伸長状況) 「「「「」」」」」 「「」」」」 「「」」」」 「「」」」」 「「」」」」 「「」」」」 「「」」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」	【②C 伸 ^長 (梯	CRD開口へのロッド伸長状況 $\mu_{\rm E}$ ロッド ベテ Xタル模擬CRDvf>ゲ

©International Research Institute for Nuclear Decommissioning

6.2.6 伸長ロッド(複合ケーブル含)のモックアップ試験状況

調査装置の伸長ロッドでの調査状況について、モックアップ試験結果を以下に示す。

表34 伸長ロッドの伸縮確認試験結果(1/2)

凡例 ○:結果良、△:課題有

試験項目	試験内容		試験結果
伸長ロッド の伸縮確 認試験	挿入確認及び視認範囲の確認 ①残置B1調査装置前のロッド 伸長 【調査装置は2機目を使用】	0	残置B1調査装置乗越え前にロッドを伸長し、ペデスタル開口付近の状況を 確認する計画であったが、3.5m伸長すると既設構造物1(今回追加)との干渉 が発生した。代替案として乗越え前に1m程度ロッドを伸ばして周辺状況を確 認 ⇒乗越え後にロッドを伸ばしてCRD開口付近の状況確認を行う運用とする。

【①残置B1装置前のロッド伸長状況】

既設構造物2

残置B1調査装置

【(①代替)残置B1装置乗越え後のロッド伸長状況】

1

6.2.6 伸長ロッド(複合ケーブル含)のモックアップ試験状況

<u>表35 伸長ロッドの伸縮確認試験結果(2/2)</u>

凡例 ○:結果良、△:課題有

(1)点群データセンサの測定範囲

1F-1ペデスタル内調査では、下図に示すように調査装置の伸長ロッド先端に搭載した計測器 (点群データセンサ)にて測定(RPV底部周辺の映像取得を目標とする)を行う。

図24ペデスタル内調査の測定範囲

(2)ペデスタル内調査における想定集積線量

調査装置のPCV内作業時間、PCV内の線量率(想定含む)から、調査計器が受けるガンマ線の集積線量を140~240Gyと想定した。

ペデスタル内 CRD開口

No	項目	作業時間 (hr)	線量率 (Gy/h)	集積線量 (Gy)		
1	インストール	1	1	1		
2	X-2~残置B1装置	0.5	8(※1)	4		
3	残置B1装置近傍調査	0.5	8(※1)	4		
4	残置B1装置~CRD開口	1	8(※1)	8		
5	ペデスタル内調査	1~2	100(※2)	100~200		
6	帰路	3	8(※1)	24		
	※1:B1調査計測値(2015/	/04計測)	+			
	※2:推定値		推定線	量140~2400		

表36ペデスタル内調査時間、線量率(想定)

(3)点群データセンサの開発状況 点群データセンサの開発状況を以下に示す。

表37 点群データセンサの開発状況

項目	進捗状況	報告状況
機種選定	完了	報告済み
機種再選定	完了(デプスカメラ:REALSENSE D435を選定)	今回報告(No.48~51)
センサ防水化	完了:防水化を行い試験実施済	今回報告(No.52~53)
センサ単体での性能評価、工 場内検証試験	完了(霧環境·水滴環境·耐放射線性)	今回報告(No.54~62)
装置への実装	完了(調査装置への搭載)	今回報告(No.63)
距離計測(単体試験)	完了(1~5m毎の距離計測結果の確認)	今回報告(No.64~65)
装置実装後の計測	完了(モックアップ試験での構造物確認、水滴落下・霧 環境の影響評価)	今回報告(No.66~67)
点群データ表示	完了	今回報告(No.68~70)

IRID

- (4) 点群データセンサの搭載性について
 - ①装置先端への搭載(下図参照)

アクセス箇所が狭隘部のためインストール・回収時の干渉リスクを考慮し、極力小さくする必要がある。

図26 調査装置インストール時の状況

(5)点群データセンサの実装について(ケーブル制約) ②調査装置用ケーブル

点群データセンサは伸長ロッド先端に搭載するため、ロッド内在チューブ(φ8)に点群データケーブル を配線する必要が有る。

点群センサ PCV外(エアロック室) PCV内 (※1)調査計器用ケーブル(ロッド内在) 凡例 ロッド内在ケーブル 伸長ロッド用ケーブル (金属フレキ) シールボックス 装置動力ケーブル 調査計器用ケーブル送り機構 複合ケーブル 伸長ロッド用 (※1)調査計器用のロッド内材ケーブルは、 ケーブルドラム 内在チューブ(08)内を通過している。 内在チューブ(08) 70) 複合ケーブル 装置動力ケーブル 複合ケーブル ドラム 装置動力ケーブル 内在チューブ(の8) 装置動力ケーブル ・複合ケーブル ロッド内材ケーブル(カメラ用ケーブル) この他に、点群データセンサ用の 伸長ロッド用ケーブル(金属フレキ) ケーブルが内包される 装置動力ケーブル

©International Research Institute for Nuclear Decommissioning

- 6.2.7 点群データセンサの進捗及び試験状況
 - (5) 点群データセンサの実装について(ケーブル制約)
 - ③点群データセンサ用ケーブル
 - ・内在チューブ中を(ロッド先端からケーブルドラムまで)40m、ドラムから点群PCまで60m、計100mの信号伝送が必要である。 USBでの伝送は困難であるため、一旦、LANに変換して長距離伝送。ロッドに搭載可能な変換器(100g以下、長辺100mm以下)は USB2.0には対応可能だが、USB 3.0には対応不可。(点群センサは、USB2.0対応のものを選択。)

 - ・ケーブルのコネクタは内在チューブ(φ8)を通過できないため、コネクタ切断⇒ケーブル挿入⇒コネクタ再接続が必要。

(光ファイバー接続のUSB3.0は適用不可。導線接続のUSB2.0、または、LANケーブルを適用。)

以上の制約により、USB2.0に対応できる点群センサを選定し、下記のケーブル・変換器の構成で信号を伝送。 複合ケーブル試験により、センサで計測した点群データが正常にPCに伝送できていることを確認。

表39 点群データセンサの構成

(6) 点群データセンサの再選定

これまでは、No.9、10のカメラを主案としていたが、その後の単体試験の結果、計測 距離 (※1:5mは不可)及び重量 (※2:センサ単体重量100g以下)に課題があることが分かり、再度選定を行った。

その結果、No.5のデプスカメラはUSB2.0で接続後LAN変換することで使用可能であることが分かり(※3)、No.5を主案とし 装置実装を行うこととする。

	No.	分類	製品名/型式	メーカ	重量 (ロッド:400g チルト:100g)	寸法 (100mm前後)	計測距離 (5m以上)	耐放射線性 (140~240Gy)	ケーブル	評価 結果
	1	LRF	UTM-30LX-EW(2次元)		300g (×)	62×62×88 (<mark>O</mark>)	60m (<mark>O</mark>)	(130)(×)	100Mbps イーサネット (〇)	~
		LRF+パン走査ユ	ニット(3次元)	ΗΟΚυγΟ	1kg (<mark>×</mark>)	120×62×88 (×)				へ (霧に弱い)
	2	ステレオカメラ	ZED 2 Stereo Camera	(株)アスク	124g (×)	175×30×33 (×)	0.2~20m (<mark>O</mark>)	215 (<mark>O</mark>)	USB3.0(×)	
	3	ステレオカメラ	ISC-100XC(カラー) ISC-100VM(モノクロ)	ミナト・ アドバンスト・ テクノロジーズ	450g (×)	169×53×52 (×)	1~12m (O) 2~25m (O)	-	USB3.0(×) USB2.0(<mark>O</mark>)	USB3.0 × (ケーブル/コネクタ 再接続不可)
	4	デプスカメラ	SCS-Colorまたは SCS-Mono	(株)アルゴ	53g (<mark>O</mark>)	109×18×24 (<mark>)</mark>)	0.3~10m (<mark>O</mark>)	-	USB3.0(×)	(ניין שוויסנייי
	5	デプスカメラ	REALSENSE D435	Intel	75g (<mark>O</mark>)	99×25×25 (<mark>O</mark>)	0.2~10m (<mark>O</mark>)	290(〇)	USB3.0(×) ⇒USB2.0で も使用可(○)	USB2.0で接続し、 LAN変換で使用 〇
I	6	全方位カメラ	Omni-60	(株)アルゴ	377g (×)	φ106×54 (<mark>)</mark>	-	-	USB3.0(×)	
	7	ミリ波レーダ	T18PE_01030103_2D	丸文	62g (<mark>O</mark>)	55×15×90 (<mark>)</mark>)	10m以上(<mark>O</mark>)	130(×)	USB3.0(×)	USB3.0 🗙 (ケーブル/コネクタ
	8	ミリ波レーダ	T18PE_01030103_3D	丸文	62g (<mark>O</mark>)	55×15×90 (<mark>O</mark>)	10m以上(<mark>O</mark>)	130(<mark>×</mark>)	USB3.0(×)	再接続不可)
٢	9	TOFデプスカメラ	DCAM710	Vzense Technology	73g (<mark>O</mark>)	103×33×22 (<mark>O</mark>)	0.2~8m (⊖) <mark>⇒</mark> 0.2~4.4 (×)	450(<mark>O</mark>)	USB2.0(<mark>O</mark>) (LAN変換)	×(計測距離)
l	10	ステレオカメラ(+ RGBカメラ)	OAK-D OpenCV DepthAI カメラ(PoE版)	Luxonis	<mark>361g</mark> (×) (※2)	130×101×31(△)	(※1) 0.2~38.4m(○)	200以上(<mark>〇</mark>) (推定値)	1Gbps イーサネット (<mark>〇</mark>)	×(重量超過)

表40 点群データセンサの選定結果

主案

前回

の主案候

補

©International Research Institute for Nuclear Decommissioning

(7) センサ防水化(試験計画)

ペデスタル内環境(水滴滴下)を考慮し、センサを防水化した確認試験を以下に示す。

表41 防水性確認試験概要

試験条件

項目	値
水量	9.5L/min(防水等級IPX3相当)
散水時間	5min
センサ-散水ノズル間距離	1m

試験体系

③:距離3015mm

(7) センサ防水化(試験結果) 試験結果を以下に示す。

RGB像

<u>表42 防水性確認試験結果</u>

散水前

散水

中

散水後

(8)距離計測(単体試験)

構造物間距離を計測できるかの試験概要(試験内容及び評価方法)を以下に示す。

IRID

(8)距離計測(単体試験)試験結果を以下に示す。

- ・4mを除いて距離に比例して誤差は大きくなった。
- •距離計測精度:3.3%/1m, 6.9-7.2%/2m, 7.9-9.8%/5m
- •4,5mでは2本の計測距離に差が生じた(0.13m/4m)

- •距離計測精度: 6.7%/2m, 19.1%/3m, 12.1%/5m
- ·計測誤差:最小:0.02m/2m,最大:0.06m/3m

- (8)距離計測(単体試験)
 - 1~3m時の計測結果を以下に示す。

<u>表45 計測結果(1~3m)</u>

(8)距離計測(単体試験)

4~5m時の計測結果を以下に示す。

_表46 計測結果(4~5m)

(9) 性能確認(工場内検証試験)

点群データセンサ単体での工場内検証試験概要を以下に示す。

<u>表47 工場内検証試験概要(点群データセンサ単体)</u>

概要

・モックアップ試験設備の構造物(ガイドチューブ、RPV炉底部)を点群センサ単体で計測できることを確認する。
 ・調査装置のロッド先端位置、パンチルト角を想定して三脚を立て、 実際に近い点群センサの配置で、
 構造物が計測できるかを確認。

試験体系

(9) 性能確認(工場内検証試験)

点群データセンサ単体での工場内検証試験結果を以下に示す。本結果は、ロッド5m時の想定位置からの取得データである。

(9) 性能確認(工場内検証試験)

点群データセンサ単体での工場内検証試験結果を以下に示す。本結果は、炉底部穴(1m)の寸法計測時の取得データである。

表49 工場内検証試験結果(炉底部穴)

・点群収録ソフト(Realsense-viewer)のMeasuring機能で2点間の距離が計測可。

・点群センサから約5mの位置の直径1mの模擬炉底部穴を7回計測したところ、0.945~1.28mと計測。 ・今後、データ処理等により精度向上が可能かを検討する。

(9) 性能確認(工場内検証試験)

点群データセンサを調査装置に仮搭載した際の工場内検証試験概要を以下に示す。

_表50 工場内検証試験概要(点群データセンサ仮搭載)

概要

試験 条件 ・調査装置のロッド先端に点群センサを仮付けし、試験設備の構造物を計測できることを確認 ・炉底部穴から水滴を噴射し、水滴が点群計測に及ぼす影響を確認

項目	条件
水滴	無/有(9.6L/min)
ロッド長	3580mm
ロッド角度	+13.5°
チルト角度	+49.5°

・伸長ロッド先端に点群センサ・変換器を仮付け

・点群センサのケーブルは、複合ケーブルとは別配線

調杳装置

ロッド角度

ロッド

(9) 性能確認(工場内検証試験)

点群データセンサを調査装置に仮搭載した際の工場内検証試験結果を以下に示す。

(10) 点群データセンサの実装

ペデスタル内調査装置2機目に点群データセンサを実装した。ロッドの伸縮、パン・チルト駆動 によりペデスタル内の点群データを採取可能。

図27 点群データセンサの実装

図28 点群データセンサ詳細

(11)距離計測(平板での計測、LED照明有無)(1/2)

平板試験体の単体試験を実施した。この際、LED照明有無による測定精度も比較した。

LED照明有無と測定精度の関係では"LED照明無し"が測定誤差が小さかった。また、その際の計測誤差の平均値はカタログ記載値(2%@2m)に収まっていることを確認した。なお、5mでは4%の誤差であった。

図31 平板までの距離と平均値の誤差

©International Research Institute for Nuclear Decommissioning

(11)距離計測(配管試験体での計測、LED照明無)(2/2) 配管2本の間隔の計測精度を確認した。この際、配管位置(上端、中央、下端)での計測精度を評価した。

配管位置(上端、中央、下端)と計測精度については、配管中央部のデータを使用した場合のほうが、誤差は小さくなることが 分かった。また、平板試験体に比較し、測定誤差は大きくなることが分かった。(距離5mで誤差10~15%)

近似距離の誤差(配管上下端算出)

近似距離の誤差(配管中央部算出)

図33 配管間隔計測と平均値の誤差

(12) 装置実装後の計測(ペデスタル壁面凹凸までの距離計測)

モックアップ試験でペデスタル壁面凹凸までの距離を計測した。この際、ペデスタル上面から水滴滴下 (最大102/min)を行った。

図34ペデスタル壁面計測(水滴滴下)

水滴が存在しているフレームは点群データの取得は不可となるが、 複数フレームを平均化することにより水滴無しと同等の結果が得られ るので、水滴滴下が測定誤差に与える影響は大きくない。 ※:フレーム間隔:0.06(s)

図35 計測誤差(水滴滴下有無)

(13) 装置実装後の計測(霧の影響)

モックアップ試験でペデスタル壁面凹凸までの距離を計測した。この際、ペデスタル内に霧を発生させ、 霧の濃度と距離計測誤差の関係を評価した。_____

IRID

IRID

©International Research Institute for Nuclear Decommissioning

RID

©International Research Institute for Nuclear Decommissioning

6.2.7 点群データセンサのモックアップ試験状況及び進捗

(14) 点群データ表示例

モックアップ試験設備の点群データセンサ表示例を以下に示す(①②を統合した場合の表示例)。

6.2.8 放射線センサの進捗及び試験状況

(1)放射線センサの構成

放射線センサ構成及び調査装置への実装状況を以下に示す。 本センサはγ線に反応し電流を出力し、線量率を測定する。(自己出力型)

図41 放射線センサを用いた計測時の構成及び実装状況

IRID

71
(2)放射線センサの開発状況

放射線センサの要求仕様に基づく開発状況を以下に示す。

項目	要求仕様	進捗状況	報告状況
感度	≦ 1 Gy/h	完了:下限0.06 Gy/h	報告済み
ノイズ影響	他機器との共存	完了:工場内検証試験:今回報告(課題有) 完了:モックアップ試験:今回報告(課題検証)	今回報告(No.73~78)
寸法	長さ≦100 mm	完了:100 mm	報告済み
重量	< 1.0 kg	完了:0.36 kg	報告済み
ケーブル	≦径2.5メタル線	完了:RG-316/U(径2.5)	報告済み
防水	注水対応	完了:防水構造で試験済	報告済み
伝送距離	100 m	完了:ノイズ対策およびケーブル長尺化による感度影 響無し	今回報告(No.79)
耐放射線性	1000 Gy	完了:積算線量5,800Gyで問題無し	今回報告(No.80)
エネルギ特性	≦30%	完了 : 感度はCs-137を基準として、Co-60の感 度は約1/2倍	今回報告(No.81)
健全性確認	各種装置との組合せ 検証、断線検知	完了:断線検知手法の有効性確認	今回報告(No.82)

表52 放射線センサの要求仕様と開発状況

(3)放射線センサの工場内検証試験結果概要 放射線センサの工場内検証試験時の構成と結果概要を以下に示す。 なお、評価結果は6.2.8(4)~(6)に記載する。

6.2.8 放射線センサの進捗及び試験状況 (4)放射線センサの工場内検証試験結果(1/3) "誘導ノイズの影響"に関する評価結果を以下に示す。

■結果: ロッド伸長後の静止状態の測定値から、各種動作時の誘導ノイズの影響は微小(0.2 Gy/h相当) ■対策: 不要

RID

©International Research Institute for Nuclear Decommissioning

(5)放射線センサの工場内検証試験結果(2/3)

"伝導ノイズの影響"に関する評価結果を以下に示す。対策前(アース:工場内共有、電源:工場内電源) はノイズ発生が見られたが、対策後(アース:接地棒埋設、電源:バッテリ)はノイズ低減が確認できた。 ノイズ低減対策前±4pA

ノイズ低減対策後±0.5pA

図45 装置動作時の時系列データ

75

備考

対策前

対策後

©International Research Institute for Nuclear Decommissioning

(7) 放射線センサのノイズ影響試験(1/2)

工場内検証試験(2022年7月実施)時、伝導ノイズ、振動ノイズについて、現地運用時に対策が必要なことが判明したため、モックアップ試験(2022年10~11月実施)で対策を実施した。

表54 工場内検証試験(ノイズ影響確認試験)結果概要

(7)放射線センサのノイズ影響試験(2/2)

モックアップ試験では、伝導ノイズ対策として計測系と調査装置本体の電源系統、アースを完全分離する。 また、振動ノイズ対策(耐振ケーブル(※))およびロッド伸長時・クローラ動作時のノイズ評価試験を行い、 現場実証時の対策/運用方法を検討した。

※: 耐振ケーブル

誘電体とシールドの間に導電性潤滑剤が塗布されており摩擦を抑えることでケーブルの曲げなどで生じる電荷 ノイズを低減する。

	<u>表55 要求仕様と開発状況</u>		
実施内容	結果の概要	現場実証時の 対策/運用	
伝導ノイズ対策の 効果確認	計測系はバッテリ、調査装置本体は発電機を 使用した。また、双方のアースを分離した体系 で測定し、ノイズはいずれも0.2 Gy/h相当で あることを確認した。	計測系はアース、電 源を分離する。	【ケーブル】 計測 計測 ・パッテリ(計測系) ・同軸ケーブル ・発電機(調査装置本体) ・耐振ケーブル ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ <
振動ノイズ対策 (耐振ケーブル) の効果検証	計測器から複合ケーブル手前までを耐振動 ケーブルとした体形で測定し、ノイズはいずれも 0.2Gy/h相当であることを確認した。	現場の振動状況に 応じて、耐振ケーブ ルを使用する。	複合ケーブル (35 m) (35 m)
ロッド伸長時・クローラ 動作時のノイズ量 評価試験	ロッド伸長後はケーブル送り作業完了後、最 大90秒でBGレベルまでノイズが低減した。	作業完了後、120 秒待機したのち線量 測定を行う。	複合ケーブル端
			図49 ノイズ対策後設備概要

(8) 伝送距離100mでの健全性

現地調査で必要になるケーブル長100mにおいて、Co-60ガンマ線照射試験を行った結果、 ケーブル長40m時と感度が同等であることを確認した。

(9) 放射線センサの耐放射線性

積算線量5,800Gy(12.76hr×456Gy/h)で出力電流値が一定であること、出力電流値が照射前 放射線センサと同等であることを確認した。

©International Research Institute for Nuclear Decommissioning

(10) エネルギー特性

プロトタイプ検出器に対して、これまで日立社内のCo-60照射設備を用いて試験を実施した。 Co-60からは1.333MeVと1.173eVのガンマ線が放出される。 感度エネルギー依存性を調べるため、日立社外設備にてCs-137を用いて照射試験を実施した。

結果

・線量率増加に伴い電流値の増加傾向を確認。出力が不安定になってからは誤差大。

・感度はCs-137を基準として、Co-60の感度は約1/2倍

図54 ノイズ対策実施後の照射試験

(11)ケーブル健全性確認

概要

ケーブル内の健全性を確認するために、TDR™装置を用いてモック アップ試験体系でデータ取得を行った。

※TDR(Time Domain Reflectometry)

①TDR接続した状態の放射線センサのノイズの測定
 ②ケーブル内の異常(断線、導通)を模擬したTDR波形の測定
 断線:複合ケーブルとセンサのコネクタを分離
 導通:センサと調査装置を電気的に接触

結果

RD

健全状態との比較により、断線、導通時にその位置で信号が変化することを確認。現場実証試験時の適用を検討する。

82

[©]International Research Institute for Nuclear Decommissioning

6.2.9 穴カバー設置装置の工場内検証試験状況

現地では、下図の通りB3調査(ROV)用グレーチング切断穴が存在するため、ペデスタル内調査を 行う際には開口を塞ぐ必要がある。穴カバー設置装置を用いた試験状況を次紙に示す。

図57 現地のグレーチング切断状況

6.2.9 穴カバー設置装置の工場内検証試験状況

穴カバー設置装置の工場内検証試験結果を下に示す。

表57 穴カバー設置装置の試験結果 凡例 ○:結果良、△:課題有 試験項目 試験内容 試験結果 穴カバー設置 現地環境を模擬(鉛毛マット ・ケーブル送り装置及び屈曲ドームカメラの映像で確認しながら、穴カバーが遠隔操 は布で模擬)した試験設備 作で設置/回収可能であることを確認した(穴カバーが障害物(鉛毛マット)に乗り上 試験 0 にて穴カバーが設置/回収 げた場合でも設置可能)。 今後、現地と同等品の鉛毛マットを設置した試験設備に 可能であることを確認する て穴カバーが設置/回収可能であることを確認する。 **宮曲ドームカメラ映像** 【遠隔操作時の映像】 【穴カバー設置状況】 ワイヤで穴カバー 穴カバー 2022-07-07 11:24:3 を吊り降ろし 屈曲ドームカメラ ケーブル 障害物 送り装置 (鉛毛マット模擬) CAFERAON PINA THA 【穴カバー回収状況】 隨害物 穴カバー 穴カバー 屈曲ドームカメラ (鉛毛マット模擬) 350Aガイドパイプ <u>
2</u>
350Aガイドパイプ 設置装置 穴カバー 穴カバー設置装置 にはまることにより (1) ホカ

©International Research Institute for Nuclear Decommissioning

6.2.10 穴カバー設置装置のモックアップ試験状況

穴カバー設置装置のモックアップ試験結果を以下に示す。

<u>表58 穴カバー設置装置の試験結果(穴カバー長600mm)</u> 凡例 〇:結果良、ム:課題有

試験内容			【験結果
現地環境を模擬(今回現 地と同等品の鉛毛マットを 設置)した試験設備にて 穴カバーが設置/回収可 能であることを確認する (穴カバー長600mm)	 (改善要)	現状の穴カバー長(600mm)の きる場合のみ設置可能。一方 下2ケースに対応する穴カバー ケース1)【手前側】鉛毛マット ⇒穴カバー長500mm ケース2)【手前側】鉛毛マット ⇒穴カバー長420mm	り場合、手前側、奥側双方の鉛毛マットが除去で 、鉛毛マットの除去が出来ないことを想定し、以 -(500mm,420mm)を準備する。 :除去不可、【奥側】鉛毛マット:除去可 を準備する。 :除去不可、【奥側】鉛毛マット:除去不可 を準備する。
ふため移動不可と想定) 「「「」」」」」 「「「」」」」」 「「「」」」」」 「「教動可能と想定) 少グ開口部周辺状況	長さ600mmの	がカバーを用いた試験状況	
			【ケース2】手前側/奥側とも鉛毛マット除去不可状態
	試験内容 現地環境を模擬(今回現地と同等品の鉛毛マットを設置)した試験設備にて、アカバーが設置/回収可能であることを確認する、アカバー長600mm) ふため移動不可と想定) ふため移動不可と想定) (次力バー長600mm)	試験内容現地環境を模擬(今回現 地と同等品の鉛毛マットを 設置)した試験設備にて 穴カバーが設置/回収可 能であることを確認する (穴カバー長600mm)よため移動不可と想定)ふため移動不可と想定)ふため移動不可と想定)(物動可能と想定)(物動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と想定)(水動可能と思想)(水動可能と思想)(水動可能と思想)(水動可能と思想)(水動可能と思想)(水動可能と思想)(水動可能) <td>試験内容 現地環境を模擬(今回現地と同等品の鉛毛マットを設置)した試験設備にて、カバーが設置/回収可能であることを確認する(アカバー長600mm)のもる場合のみ設置可能。一方下2ケースに対応する穴カバーケース1)【手前側】鉛毛マットッ穴カバー長500mmの「ース2)【手前側】鉛毛マットッ穴カバー長420mm おため移動不可と想定 のののののののののののののののののののののののののののののでたがのです。 ふため移動不可と想定 のののののののののののののののののののののののののののののののののののの</td>	試験内容 現地環境を模擬(今回現地と同等品の鉛毛マットを設置)した試験設備にて、カバーが設置/回収可能であることを確認する(アカバー長600mm)のもる場合のみ設置可能。一方下2ケースに対応する穴カバーケース1)【手前側】鉛毛マットッ穴カバー長500mmの「ース2)【手前側】鉛毛マットッ穴カバー長420mm おため移動不可と想定 のののののののののののののののののののののののののののののでたがのです。 ふため移動不可と想定 のののののののののののののののののののののののののののののののののののの

[1]

6.2.10 穴カバー設置装置のモックアップ試験状況

穴カバー設置装置の穴カバー長さ見直し後の試験結果を以下に示す。

表59 穴カバー設置装置の試験結果(穴カバー長500mm、420mm) 凡例 ○:結果良、△:課題有

RID

©International Research Institute for Nuclear Decommissioning

86

6.2.11 調査装置用インストール装置の工場内検証試験状況

(1)機能性向上のために以下の改善を行い、工場内検証試験を実施した。

表60調査装置用インストール装置の改善内容

No	改善内容	改善前の状況	改善後の状況
1	スコップ部のケー ブルルート幅拡大 (45⇒65mm)		ケーブルルート幅を 45⇒65mmlこ拡大し ケーブルの挟まりを 防止
2	ケーブル押さえ部 のローラ向き変更 (横⇒縦型)		<image/>

©International Research Institute for Nuclear Decommissioning

6.2.11 調査装置用インストール装置の工場内検証試験状況

(2)作業性向上のために以下の改善を行い、工場内検証試験を実施した。(調査装置及び穴カバーの 改善) 表61 インストール時の作業性向上のための改善

No	改善内容	改善前の状況	改善後の状況
1	調査装置先端ガイド 部形状・材質見直し (樹脂⇒金属)	<image/>	先端がイド部見直しに よりインストール時の着 座の際に変形防止
2	穴カバーの強度UPの ため板厚変更(板厚 4⇒6mm)、ヒンジ部 見直し	着座の際穴カバー変形の可能性有	<image/> <text></text>

©International Research Institute for Nuclear Decommissioning

6.2.11 調査装置用インストール装置の工場内検証試験状況

(3)工場内検証試験結果(調査装置インストール・回収)を以下に示す。

表62調査装置用インストール装置の試験結果

凡例 ○:結果良、△:課題有

試験項目	試験内容			式験結果
インストール 装置を用いた 調査装置設 置/回収試験	現地環境を模擬した試験 設備にて調査装置が設置/ 回収可能であることを確認 する	0	・ケーブル送り装置及び屈曲ドーム 操作(※1)でインストール/回収可能 ・調査装置用インストールの改善、 (6.2.11項(2)の内容)に伴う、インスト	カメラの映像で確認しながら、調査装置を遠隔 であることを確認した 調査装置先端ガイド部および穴カバーの改善 ール時の作業性向上を確認した
【調査装置インスト・		T	(※2)ポール操作による	【遠隔操作状況】(※1) 屈曲バーム ケーブル送り装置 調査装置左前方 調査装置ロッド
	カメラ カメラ マストール装置押出(※2)		インストール装置押出	h f
インストール装置屈曲	 インストール 装置旋回 オーブル送り装置 	調査装	The second se	f = J h f j f h f j

©International Research Institute for Nuclear Decommissioning

6.2.12 調査装置用インストール装置のモックアップ試験状況

モックアップ試験結果(調査装置インストール・回収)を以下に示す。

<u>表63 調査装置用インストール装置の試験結果</u> 凡例 O:結果良、A:課題有

試験項目	試験内容		試験結果
インストール 装置を用いた 調査装置設 置/回収試験	現地環境を模擬した試験 設備にて調査装置が設置/ 回収可能であることを確認 する【調査装置は2機目を使用】 (工場内検証試験は1機目)	0	・1号機と同様に、ケーブル送り装置及び屈曲ドームカメラの映像で確認しながら、 調査装置を遠隔操作でインストール/回収可能であることを確認した。 なお、リスク対策として、奥側(PLR配管右横)の鉛毛マットを除去できない場合を想 定した確認を行い、インストール/回収が可能であった。

【調査装置インストール状況(回収は逆手順)】

©International Research Institute for Nuclear Decommissioning

6.2.13 ケーブル送り装置の工場内検証試験状況

ケーブル送り装置の工場内検証試験結果を以下に示す。

<u>表64 ケーブル送り装置の試験結果(1/2)</u>

凡例 ○:結果良、△:課題有

	-				
試験項目	試験内容			試験結果	
ケーブル送り 装置のインス トール/回収 確認試験	現地環境を模擬した試験 設備にてケーブル送り装置 が設置/回収可能であるこ とを確認する	0	・屈曲ドームカメラの映像で確認し インストール/回収が遠隔操作で認 ・ただし、250Aの先に手摺が存在し り近い場合には、装置干渉の可能 は、リスク対策としてモックアップ詞	ながら、ケーブル送り装置のインストール装置を用い 设置/回収可能であることを確認した しており(※1:現地映像)、手摺までの距離が想定位置 2性があるため、手摺切断を検討する。手摺切断につい 試験で確認する。	た は いて
【ケーブル送り装置イ	ンストール状況(回収は逆手順)】	手指	【 屈曲ドームカメラ	(※1)250A周辺の手摺 状況【現地映	像】
				9000 # UUBELETV2 250A開孔部 居曲カメラ	
	く に よ た 一 ル と さ に し し に し し に し し に し こ し し に し し し し し し し し し し し し し		-ブル送り着座	 ①250Aガイドパイプ 先端 ②手摺 562(B3調査時の作業実績図面寸法からの想定) ① ~ ②間距離 	

6.2.13 ケーブル送り装置の工場内検証試験状況

ケーブル送り装置の工場内検証試験結果を以下に示す。

表65 ケーブル送り装置の試験結果(2/2)

凡例 ○:結果良、△:課題有

No.92

試験項目	試験内容		試験結果
ケーブル送り 装置の動作 確認試験	現地環境を模擬した試験設備にてケーブル送り動作が 可能であることを確認する	0	・ケーブル送り装置の動作及び調査装置用複合ケーブルの送り動作に問題が無い ことを確認した。なお、ケーブル送り動作を行う際に調査装置の複合ケーブルを跨ぐ 動作が必要となるが、ケーブル送り装置の転倒が無いことを確認した。 (現地環境を想定してケーブルが濡れた状態でも転倒しないことを確認済)

ケーブル送り装置

調査装置

調査装置用複合ケーブルをケーブル送り装置で跨ぐ動作

IRID

©International Research Institute for Nuclear Decommissioning

6.2.14 ケーブル送り装置のモックアップ試験状況

ケーブル送り装置のモックアップ試験(インストール/回収試験)結果を以下に示す。

<u>表66 ケーブル送り装置の試験結果(インストール/回収試験)</u> 凡例 O:結果良、A:課題有

試験項目	試験内容		試験結果
ケーブル送り 装置のインス トール/回収 確認試験	現地環境を模擬(今回現地 と同等品の鉛毛マットを設 置)した試験設備にてケー ブル送り装置が設置/回収 可能であることを確認する	0	・以下条件でインストール/回収が出来ることを確認した。 ① ガイドパイプ(250A)〜架台手摺までの距離が560mm以上ある。 ②架台手摺が切断除去されている。 (手摺切断のモックアップ試験結果は、6.2.21項に記載) ※:PLR配管横の鉛毛マット有でもインストール/回収に影響を及ぼさない。
【ケーブル送り装置・	<u>インストール状況(回収は逆手順)】</u>		
(※2 250 <u>(※1)手</u> ケーブル送り装置	250A開孔部 <u> </u>	No No	では、 「日本の学校会会には、 たたのでの にののでの したのの したののでの したのの したののでの したのの したののでの しての したののでの してのでの してののでの してののでの してののでの
#出 ケーブル送り装 インストール装	置用		

©International Research Institute for Nuclear Decommissioning

6.2.14 ケーブル送り装置のモックアップ試験状況

ケーブル送り装置のモックアップ試験(動作確認試験)結果を以下に示す。

<u>表67 ケーブル送り装置の試験結果(動作確認試験)</u> 凡例 O:結果良、A:課題有

ケーブル送り 装置の動作 確認試験 「前であることを確認する 「調査装置は2機目を使用」 (工場内検証試験は1機目) 「調査装置2機目を用いたケーブル送り装置の動作及び調査装置用複合ケーブル の送り動作を確認し、1機目と同様に問題が無いことを確認した。 ・リスク対策(有識者より走行ルート上のケドメが無い可能性有との意見)として、ケドンが無い可能性有との意見)として、ケドンが無い可能性有との意見)として、ケドンが無い状態での動作確認を行った。走行時にケーブル送り装置及び調査装置複合ケーブルが開口から落下する可能性があるため、走行時により慎重に作業を行き	試験項目	試験内容		試験結果
	ケーブル送り 装置の動作 確認試験	現地環境を模擬した試験設備にてケーブル送り動作が可能であることを確認する 【調査装置は2機目を使用】 (工場内検証試験は1機目)	0	 ・調査装置2機目を用いたケーブル送り装置の動作及び調査装置用複合ケーブルの送り動作を確認し、1機目と同様に問題が無いことを確認した。 ・リスク対策(有識者より走行ルート上のケドメが無い可能性有との意見)として、ケドメが無い状態での動作確認を行った。走行時にケーブル送り装置及び調査装置複合ケーブルが開口から落下する可能性があるため、走行時により慎重に作業を行う必要有

©International Research Institute for Nuclear Decommissioning

6.2.15 シールボックス・ケーブルドラムの工場内検証試験状況

(1)ケーブル送り装置用及び穴カバー設置装置用シールボックス ケーブル送り装置用シールボックス(ケーブルドラムー体型)、穴カバー設置装置用シールボックスを 人力(5人)で狭隘部への搬入及び設置が可能であることを確認した。

西側通路高さ模擬 エアロック室高さ模擬 穴カバー設置装置用シールボックス機 ブル送り装置用シールボックス搬入

【事前設置】搬出入用スロープ

図58 ケーブル送り装置用シールボックスの搬入状況

図59 穴カバー設置装置用シールボックスの搬入状況

【350Aに設置】

【200Aに設置】監視カメラ(又は鉛毛マット除去装置)用チャンバ

図60 各シールボックスの設置状況

No.95

【250Aに設置】

6.2.15 シールボックス・ケーブルドラムの工場内検証試験状況

(2)調査装置用ケーブルドラム・シールボックス

調査装置用ケーブルドラム、シールボックスを人力(6人)で狭隘部への搬入及び設置が可能であること を確認した。(ケーブルドラムは搬入品中最重量の約1.5tonであるが、作業性に問題無し。)

【350AIこ設置】 調査装置用ケーブルドラム(最重量の約1.5ton)

図61 調査装置用ケーブルドラムの搬入状況

【350Aに設置】調査装置用シールボックス

図62 調査装置用シールボックスの搬入状況

6.2.15 シールボックス・ケーブルドラムの工場内検証試験状況

(3)調査装置用ケーブルドラム・シールボックス

調査装置ケーブルドラムとシールボックスはエアロック室内で一体化組立が出来ることを確認した。

図63 調査装置用ケーブルドラム・シールボックスの設置状況

6.2.16 シールボックス・ケーブルドラムのモックアップ試験状況

 (1)ケーブル送り装置用及び穴カバー設置装置用シールボックス
 α汚染対策養生(エアロック室内に設置済)のある狭隘部でもケーブル送り装置用シールボックス(ケーブルドラム ー体型)、穴カバー設置装置用シールボックスを人力(7人)での搬入及び設置が可能であることを確認した。

6.2.16 シールボックス・ケーブルドラムのモックアップ試験状況

(2)調査装置用ケーブルドラム・シールボックス

α 汚染対策養生(エアロック室内に設置済)のある狭隘部でも調査装置用ケーブルドラム・シールボックスを人力(7人)で搬入及び設置が可能であることを確認した。(ケーブルドラムは搬入品中最重量の約 1.5tonであるが、作業性に問題無し)

図67 調査装置用ケーブルドラム・シールボックスの搬入状況

©International Research Institute for Nuclear Decommissioning

99

6.2.16 シールボックス・ケーブルドラムのモックアップ試験状況

(3)調査装置用ケーブルドラム・シールボックス

α汚染対策養生(エアロック室内に設置済)のある狭隘部でも調査装置ケーブルドラムとシールボックス のエアロック室内での一体化組立、隔離弁への取付が出来ることを確認した。

図68 調査装置用ケーブルドラム・シールボックスの設置状況

©International Research Institute for Nuclear Decommissioning

6.2.17 監視カメラ(洗浄機能付)の検討状況及び工場内検証試験状況

No.101

(1)監視カメラへの洗浄機能追加の検討状況

ペデスタル内調査装置の回収時の洗浄を目的に監視カメラへ洗浄機能追加の検討し、実機製作を 行った。(200Aから挿入し使用)

洗浄機能の動作確認を行い、水洗圧力、ノズル形状を検討した。また、ペデスタル内調査装置(350A)、 ケーブル送り装置(250A)の洗浄を実施した。

監視カメラ

図69 監視カメラに洗浄機能追加後の装置外観

©International Research Institute for Nuclear Decommissioning

6.2.17 監視カメラ(洗浄機能付)の検討状況及び工場内検証試験状況

No.102

- (2)監視カメラの工場内検証試験状況(チャンバ設置)
 - 監視カメラ用チャンバを人力(4人)で狭隘部への搬入及び設置が可能であることを確認した。
 - なお、監視カメラ用チャンバは、装置使用状況に応じて、350Aまたは200Aに取付して作業を行う計画 である。(※1)
- (※1)鉛毛マット除去装置(200A設置)使用時は、350Aに監視カメラ用チャンバ設置し作業を行う。 (それ以外は、200Aに監視カメラ用チャンバを設置し作業)

図70 監視カメラ用チャンバの搬入状況

【350A設置】監視カメラ用チャンバ

<u>図71 監視カメラ用チャンバの設置状況(350A)</u>

【200A設置】監視カメラ用チャンバ

図72 監視カメラ用チャンバの設置状況(200A)

6.2.17 監視カメラ(洗浄機能付)の検討状況及び工場内検証試験状況

No.103

(3)監視カメラの工場内検証試験状況(映像及び洗浄確認)

①監視カメラ映像により遠隔操作作業が可能であることを確認した。

②洗浄機能を用いた各装置回収時の洗浄が可能であることを確認した。洗浄効果や水洗ノズル仕様 等はモックアップ試験で確認を行う。

©International Research Institute for Nuclear Decommissioning

6.2.18 監視カメラ(洗浄機能付)のモックアップ試験状況

(1) 監視カメラのモックアップ試験状況(チャンバ設置)

α汚染対策養生(エアロック室内に設置済)のある狭隘部でも監視カメラ用チャンバを人力(4人)で搬入 及び設置が可能であることを確認した。

なお、監視カメラ用チャンバは、装置使用状況に応じて、350Aまたは200Aに取付して作業を行う計画である。(※1)

(※1)鉛毛マット除去装置(200A設置)使用時は、350Aに監視カメラ用チャンバ設置し作業を行う。 (それ以外は、200Aに監視カメラ用チャンバを設置し作業)

図75 監視カメラ用チャンバの搬入状況

【350A設置】監視カメラ用チャンバ

<u>図76 監視カメラ用チャンバの設置状況(350A)</u>

IRID

©International Research Institute for Nuclear Decommissioning

図77 監視カメラ用チャンバの設置状況(200A)

6.2.18 監視カメラ(洗浄機能付)のモックアップ試験状況

(2) 監視カメラのモックアップ試験状況(洗浄確認)

ノズルは、広範囲を噴射可能な"円錐状噴射"のものを選定し、洗浄機能を用いた回収時の洗浄が可能であることを確認した。 ①調査装置:インストール装置を旋回し洗浄対応することで表面の洗浄が可能であるが、裏面やケーブルの洗浄が課題である。 ②ケーブル送り装置:下方への噴射となるため装置全体の洗浄が可能だが、調査装置同様にケーブルの洗浄が課題である。 今後の対策として、インストール装置から水が出るように検討を行い、ケーブルや裏面が洗浄可能なように改善を進める。

©International Research Institute for Nuclear Decommissioning

6.2.19 鉛毛マット除去装置の検討及び工場内検証試験状況

現地映像より調査装置走行ルート付近に鉛毛マットが存在するため(下図参照)、除去装置の検討を行い準備を進めた。鉛毛マット除去装置の構造を以下に示す。

©International Research Institute for Nuclear Decommissioning

6.2.19 鉛毛マット除去装置の検討及び工場内検証試験状況

鉛毛マット除去装置の試験状況を以下に示す。

監視カメラ映像にて鉛毛マットを把持して持上げ移動可能(10kg迄)であることを確認した。

現地では、鉛毛マットが固着して把持不可の可能性もあるため、その場合には鉛毛マットを押出して走行ルート上から除去する等の対応を行う計画である。

このため実機相当の鉛毛マット(高温で溶かした模擬品)を準備し、モックアップ試験で確認を行う。

6.2.20 鉛毛マット除去装置のモックアップ試験状況

No.108

実機相当の鉛毛マット(高温で溶かした模擬品(※1))を準備し、試験設備に配置して除去試験を行った。

①<u>奥側の鉛毛マット(PLR配管右横)</u> 作業に支障がでないエリアに鉛毛マットを移動することが可能であった。

図83 鉛毛マット除去装置のモックアップ試験状況(1/2)

6.2.20 鉛毛マット除去装置のモックアップ試験状況

②手前側の鉛毛マット(ROV穴と架台の間)

鉛毛マットの除去装置のアーム長の関係から鉛毛マットを掴むのが困難であり、仮に掴めても作業に支障がない エリアに鉛毛マットを移動するだけの装置剛性(作業者のポール操作)が無いことを確認した。

⇒本エリアの鉛毛マットの除去に失敗しROV穴から地下階に落とすリスクも有るため、本エリアの鉛毛マット除去は 実施しない方針とする。代替として、穴カバー大きさを見直し(※1)、鉛毛マットに掛からないようにする。

②手前側の鉛毛マット(ROV穴と架台の間)

①奥側の鉛毛マット(PLR配管右横)

(※1) 穴カバーの見直し

作業者のポールひねり操作で鉛毛マットを移動できない

No.109

図84 鉛毛マット除去装置のモックアップ試験状況(2/2)

©International Research Institute for Nuclear Decommissioning

6.2.21 手摺切断装置の検討及びモックアップ試験状況

PCV 内架台に手摺(250A)が存在する状態で、ケーブル送り装置をインストール可能なことは確認しているが、 現地の手摺~ガイドパイプ間の距離が想定以下(560 mm 以下)の場合、ケーブル送り装置をインストールでき ない可能性がある。そのため、リスク対策として手摺切断装置を準備し、手摺切断を実施した。 手摺周辺状況は以下、切断状況は次紙に示す。

6.2.21 手摺切断装置の検討及びモックアップ試験状況

ガイドパイプから手摺間の距離が560 mm(設計値)からそれ以下の500 mmでも切断可能であることを確認した。 切断は窒素を駆動源としたレシプロソーで、供給圧力1.0Mpa にて約30 分で切断可能であることを確認した。 手摺切断試験状況を以下に示す。

<u>表68 手摺切断試験状況</u>

©International Research Institute for Nuclear Decommissioning

(1) 試験目的

工場内検証試験により、ペデスタル内調査の現場作業における工法および装置の課題抽出を行い、対策 (装置の改良、手順の改善、リスクの抽出、等)を検討した。

モックアップ試験では、工場内検証試験で検討した対策の検証をワンスルーで確認し、工法(装置、手順、リス ク対策)および必要人員・作業員の被ばく量評価を行った。評価結果を次紙以降に示す。

<u>図88 試験目的</u>

(2) 被ばく量の算出(現場作業の雰囲気線量) 被ばく量(作業者)算出に際しては、現場作業を行う1F-1R/Bエアロック室周辺雰囲気線量から算出した。

図89 エアロック室周辺線量情報(2021年12月14日測定)

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(1/13)

モックアップ試験で検証/確立した作業手順での作業時間、人員を下表に示す。モックアップ試験の実績を 基に現地での想定被ばく量及び必要人員・班数・日数を算出した。

表69 モックアップ試験での作業実績と想定被ばく量(スロープ・吊架構・α汚染ハウス設置作業)

		MU訂	弌験		現地での作	業想定		
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数	想定
		1	2	③(=①×2(MUの2倍想定))	$(4) = (2 \times (3))$	(5)(=(4)/0.5)	(1竝0名)	口致
1	調査装置用機器(エアユニット・ 制御盤)を西側通路奥へ搬入	5分	5人	西側通路(2mSv/h):10分	1.7	3.4人以上	1班	
2	スロープ設置	80分	5人	西側通路(2mSv/h):160分	26.7	54人以上	9班	
3	ケーブル送り装置機器(制御 盤)をエアロック室内へ搬入	5分	3人	西側通路(2mSv/h):5分 エアロック室(0.57mSv/h):5分	0.64	1.4人以上	1班	3日
4	α汚染対策ハウス(奥側用)を エアロック室内へ設置	35分	6人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):60分	5.42	11人以上	2班	
5	吊架構、α汚染対策ハウス(手 前用)、局所排風機をエアロック 室内へ設置	100分	7人	西側通路(2mSv/h): 30分 エアロック室(0.57mSv/h): 170分	18.3	37人以上	7班	

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(2/13) <u>表70 モックアップ試験での作業実績と想定被ばく量(手摺切断作業)</u>

		MU	試験		現地での作業	業想定		
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=④/0.5)		ПЖ
6	屈曲ドームカメラ用チャンバ搬 入・エアロック室内へ設置 (200A)	30分	6人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 50分	4.85	9.8人以上	2班	
7	手摺切断装置用チャンバ搬入・ エアロック室内へ設置(250A)	30分	6人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 50分	4.85	9.8人以上	2班	
8	屈曲ドームカメラ用チャンバ (200A)、手摺切断装置用チャ ンバ(250A)の漏えい確認	25分	5人	エアロック室(0.57mSv/h): 50分	2.4	4.8人以上	1班	
9	西側通路(スロープ上エアロッ ク室前)にモニタ類設置、ケーブ ル類接続	40分	6人	西側通路(2mSv/h):50分 エアロック室(0.57mSv/h):30分	11.73	23.5人以上	4班	2日
10	屈曲ドームカメラをPCV内ヘイン ストール(250A)	50分	6人	装置かストール/走行 (0.6mSv/h):100分	6	12人以上	2班	
11	手摺切断装置をPCV内ヘインス トール及び手摺切断作業 (250A)	60分	6人	装置心ストール/走行 (0.6mSv/h):120分	7.2	14.4人以上	3班	
12	手摺切断装置をPCV内からアン インストール(250A)	20分	6人	装置インストール/走行 (0.6mSv/h):40分	2.4	4.8人以上	1班	
13	屈曲ドームカメラをPCV内からア ンインストール(200A)	10分	7人	装置インストール/走行 (0.6mSv/h):20分	1.4	2.8人以上	1班	
14	手摺切断装置用チャンバを取外 し、搬出(250A)	20分	6人	西側通路(2mSv/h):5分 エアロック室(0.57mSv/h):55分	4.16	8.4人以上	2班	

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(3/13)

表71 モックアップ試験での作業実績と想定被ばく量(鉛毛マット除去作業)

		MU	試験		現地での作業想定			
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定 日数
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		-~
15	屈曲ドームカメラ用チャンバ(200A)取外し、350A 横に仮置	10分	6人	エアロック室(0.57mSv/h):20分	1.14	2.3人以上	1班	
16	ケーブル送り装置用シールボックス(ケーブルドラ ムー体型)を搬入・エアロック室内へ設置(250A)	30分	5人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):50分	4.1	8.2人以上	2班	
17	鉛毛マット除去装置用チャンバ搬入・エアロック室 内へ設置(200A)	25分	6人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):40分	4.32	8.7人以上	2班	
18	350A横に仮置していた屈曲ドームカメラ用チャン バを設置(350A)	20分	6人	エアロック室(0.57mSv/h):40分	2.28	4.6人以上	1班	
19	屈曲ドームカメラ用チャンバ(350A)、鉛毛マット除 去装置用チャンバ(200A)、ケーブル送り装置 (250A)の漏えい確認	25分	5人	エアロック室(0.57mSv/h): 50分	2.38	4.8人以上	1班	
20	ケーブル類接続	30分	6人	エアロック室(0.57mSv/h):60分	3.42	6.9人以上	2班	
21	屈曲ドームカメラをPCV内ヘインストール(350A)	35分	6人	装置インストール/走行 (0.6mSv/h): 70分	4.2	8.4人以上	2班	3日
22	ケーブル送り装置をPCV内ヘインストール(250A)	45分	8人	装置インストール/走行 (0.6mSv/h):90分	7.2	14.4人以上	3班	
23	鉛毛マット除去装置をPCV内ヘインストール及び 鉛毛マット除去作業(200A)	65分	9人	装置インストール/走行 (0.6mSv/h):130分	11.7	23.4人以上	6班	
24	鉛毛マット除去装置をPCV内からアンインストール (200A)	5分	5人	装置インストール/走行 (0.6mSv/h):10分	0.5	1人以上	1班	
25	屈曲ドームカメラをPCV内からアンインストール (350A)	10分	7人	装置インストール/走行 (0.6mSv/h):20分	1.4	2.8人以上	1班	
26	屈曲ドームカメラ用チャンバ(350A)取外し、350A 横に仮置	10分	6人	エアロック室(0.57mSv/h):20分	1.14	2.3人以上	1班	
27	鉛毛マット除去装置用チャンバを取外し、搬出 (200A)	10分	6人	西側通路(2mSv/h):5分 エアロック室(0.57mSv/h):15分	1.86	3.8人以上	1班	

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(4/13)

表72 モックアップ試験での作業実績と想定被ばく量(穴カバー設置作業)

		MU	試験		現地での作	業想定	•	
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		-~
28	350A横に仮置していた屈曲ドームカメラ用 チャンバを設置(200A)	10分	6人	エアロック室(0.57mSv/h): 20分	1.14	2.3人以上	1班	
29	穴カバー設置装置用シールボックス搬入・エ アロック室内へ設置(350A)	30分	7人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 50分	5.66	11.3人以上	2班	
30	屈曲ドームカメラ用チャンバ(200A)、穴カ バー設置装置シールボックス(350A)の漏え い確認	20分	5人	エアロック室(0.57mSv/h): 40分	1.9	3.8人以上	1班	
31	屈曲ドームカメラをPCV内へインストール (200A)	35分	6人	装置インストール/走行 (0.6mSv/h):70分	4.2	8.4人以上	1班	
32	穴カバー設置装置をPCV内ヘインストール 及び穴カバー設置作業(350A)	70分	8人	装置インストール/走行 (0.6mSv/h):140分	11.2	22.4人以上	4班	2日
33	穴カバー設置装置をPCV内からアンインス トール(350A)	10分	5人	装置インストール/走行 (0.6mSv/h):20分	1	2人以上	1班	
34	屈曲ドームカメラをPCV内からアンインストー ル(200A)(チャンバ内へカメラ引き込み状態 へ)	10分	7人	装置インストール/走行 (0.6mSv/h):20分	1.4	2.8人以上	1班	
35	穴カバー設置装置用シールボックスを取外し、搬出(350A)	20分	6人	西側通路(2mSv/h):5分 エアロック室(0.57mSv/h):35分	3	6.0人以上	1班	

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(5/13)

表73 モックアップ試験での作業実績と想定被ばく量(1号機の調査装置インストール作業)

		MU	試験		現地での作	業想定		
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	シ要班数 1班6名) 想定 日数 1班6名) 日数 1班 2班 2班 3日 1班 3班 1班 1班
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		ЦЖ
36	【1号機:放射線センサ用】調査装置ケーブル 切断用グローブボックス搬入、エアロック室 内350A左側へ仮置き(緊急時のケーブル切断 時のみ使用)	3分	1人	西側通路(2mSv/h): 4分 エアロック室(0.57mSv/h): 2分	0.16	0.4人以上	1班	
37	【1号機】調査装置用ケーブルドラム搬入、エ アロック室で吊上げ(350A)	20分	7人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 30分	4.33	8.7人以上	2班	
38	【1号機】調査装置用シールボックス搬入、エ アロック室で吊上げ(350A)	15分	7人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 20分	3.76	7.5人以上	2班	
39	【1号機】調査装置用シールボックスとケーブ ルドラム組付け(350A)	35分	8人	エアロック室(0.57mSv/h): 70分	5.32	10.7人以上	2班	
40	【1号機】調査装置用シールボックスとケーブ ルドラム組付け後の単体漏えい確認(350A)	10分	7人	エアロック室(0.57mSv/h):20分	1.33	2.7人以上	1班	3日
41	【1号機】調査装置用シールボックスのフラン ジ接続(350A)	30分	2人	エアロック室(0.57mSv/h):60分	1.14	2.3人以上	1班	
42	【1号機】調査装置用シールボックスとケーブ ルドラムのフランジ部漏えい確認(350A)	10分	5人	エアロック室(0.57mSv/h):20分	0.95	1.9人以上	1班	
43	【1号機】調査装置制御盤等のケーブル接続	30分	8人	西側通路(2mSv/h): 20分 エアロック室(0.57mSv/h): 40分	8.4	16.8人以上	3班	
44	【1号機】調査装置動作確認およびインストー ル準備(グローブボックス)作業	25分	3人	 エアロック室(0.57mSv/h):50分	1.43	2.9人以上	1班	
45	【1号機】調査装置装置をPCV内ヘインストール(350A)	30分	8人	装置インストール/走行 (0.6mSv/h):60分	4.8	9.6人以上	2班	

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(6/13)

		MU	試験		現地での作	業想定		
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	田数 想定 日数 日数 日数
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		
46	【1号機】調査装置をエアロック前から残置B1 装置前まで走行(途中でのケーブル送り装置 でのケーブル跨ぎ作業含)	25分	5人	装置インストール/走行 (0.6mSv/h):50分	2.5	5人以上	1班	
47	【1号機】調査装置の伸長ロッドを1m伸ばし残 置B1装置乗越前の周辺確認、終了後ロッド 収縮	15分	5人	装置インストール/走行 (0.6mSv/h): 30分	1.5	3人以上	1班	
48	【1号機】調査装置を前進走行し残置B1装置 乗越	15分	5人	装置インストール/走行 (0.6mSv/h):30分	1.5	3人以上	1班	
49	【1号機】調査装置の伸長ロッドを伸ばし残置 B1装置乗越後の周辺確認(5mロッド伸長)、 終了後ロッド収縮	20分	5人	装置インストール/走行 (0.6mSv/h): 40分	2	4人以上	1班	
50	【1号機】調査装置をCRD開口前まで前進走 行	20分	5人	装置インストール/走行 (0.6mSv/h):40分	2	4人以上	1班	40
51	【1号機】調査装置の伸長ロッドを伸ばしペデ スタル内を調査(1~5mロッド伸長)、終了後 ロッド収縮	40分	5人	装置やストール/走行 (0.6mSv/h):120分【調査作業のた めMUの3倍想定とする】	6	12人以上	2班	
52	【1号機】調査装置をCRD開口前~残置B1装 置前までバック走行	10分	5人	装置インストール/走行 (0.6mSv/h):20分	1	2人以上	1班	
53	【1号機】調査装置をバック走行し残置B1装 置乗越	5分	5人	装置かストール/走行 (0.6mSv/h):10分	0.5	1人以上	1班	
54	【1号機】調査装置をエアロック前までバック 走行	10分	5人	装置インストール/走行 (0.6mSv/h): 20分	1	2人以上	1班	

表74 モックアップ試験での作業実績と想定被ばく量(1号機での調査作業)

No.120

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(7/13)

表75 モックアップ試験での作業実績と想定被ばく量(調査装置1号機の洗浄及びアンインストール作業)

		MU試験			現地での作業想定						
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数			
			2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)					
55	【1号機】調査装置洗浄	20分	7人	装置インストール/走行 (0.6mSv/h):40分	2.8	5.6人以上	1班				
56	【1号機】調査装置装置をPCV内からアンイン ストール、グローブボックス作業(350A)	30分	8人	装置インストール/走行 (0.6mSv/h):60分	4.8	9.6人以上	2班	1日			

表76 モックアップ試験での作業実績と想定被ばく量(調査装置1号機⇒2号機入替及びインストール作業)

		MU	式験	現地での作業想定					
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数	
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=④/0.5)		цЖ	
57	【1号機】調査装置制御盤等のケーブル解線	15分	6人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):20分	3.14	6.3人以上	2班		
58	【1号機】調査装置用シールボックスのフランジ接続切り離し (350A)	10分	4人	エアロック室(0.57mSv/h):20分	0.76	1.6人以上	1班		
59	【1号機】調査装置用シールボックスとケーブルドラム切り離し、シート養生(350A)	30分	6人	エアロック室(0.57mSv/h):20分	1.14	2.3人以上	1班		
60	【1号機】ケーブルドラム吊上げ、調査装置用シールボックス搬 出(350A)	20分	7人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):30分	4.32	8.6人以上	2班		
61	【1号機】ケーブルドラム搬出(350A)	10分	7人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):10分	3	6.0人以上	1班		
62	【2号機:点群データセンサ用】調査装置用ケーブルドラム搬 入、エアロック室で吊上げ(350A)	20分	7人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):30分	4.41	8.9人以上	2班		
63	【2号機】調査装置用シールボックス搬入、エアロック室で吊上 げ(350A)	15分	7人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):20分	3.71	7.5人以上	2班	3日	
64	【2号機】調査装置用シールボックスとケーブルドラム組付け (350A)	35分	8人	エアロック室(0.57mSv/h): 70分	5.32	10.7人以上	2班		
65	【2号機】調査装置用シールボックスとケーブルドラム組付け 後の単体漏えい確認(350A)	10分	7人	エアロック室(0.57mSv/h):20分	1.33	2.7人以上	1班		
66	【2号機】調査装置用シールボックスのフランジ接続(350A)	30分	2人	エアロック室(0.57mSv/h):60分	1.14	2.3人以上	1班		
67	【2号機】調査装置用シールボックスとケーブルドラムのフラン ジ部漏えい確認(350A)	10分	5人	エアロック室(0.57mSv/h):20分	0.95	1.9人以上	1班		
68	【2号機】調査装置制御盤等のケーブル接続	30分	8人	西側通路(2mSv/h):20分 エアロック室(0.57mSv/h):40分	8.4	16.8人以上	3班		
69	【2号機】調査装置動作確認およびインストール準備(グローブ ボックス)作業	25分	3人	エアロック室(0.57mSv/h):50分	1.43	2.9人以上	1班		
70	【2号機】調査装置装置をPCV内ヘインストール(350A)	30分	8人	装置インストール/走行 (0.6mSv/h):60分	4.8	9.6人以上	2班		

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(9/13)

		MU	試験		現地での作業	現地での作業想定				
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数		
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=④/0.5)		-~		
71	【2号機】調査装置をエアロック前から残置B1装置前まで走行 (途中でのケーブル送り装置でのケーブル跨ぎ作業含)	25分	5人	装置インストール/走行 (0.6mSv/h):50分	2.5	5人以上	1班			
72	【2号機】調査装置を前進走行し残置B1装置乗越	15分	5人	装置インストール/走行 (0.6mSv/h):30分	1.5	3人以上	1班			
73	【2号機】調査装置の伸長ロッドを伸ばし残置B1装置乗越後の 周辺確認(5mロッド伸長)、終了後ロッド収縮	20分	5人	装置インストール/走行 (0.6mSv/h):40分	2	4人以上	1班			
74	【2号機】調査装置をCRD開口前まで前進走行	20分	5人	装置インストール/走行 (0.6mSv/h):40分	2	4人以上	1班			
75	【2号機】調査装置の伸長ロッドを伸ばしペデスタル内を調査 (1~5mロッド伸長)、終了後ロッド収縮	40分	5人	装置インストール/走行 (0.6mSv/h): 120分【調査作業のた めMUの3倍想定とする】	6	12人以上	2班	4日		
76	【2号機】調査装置をCRD開口前~残置B1装置前までバック 走行	10分	5人	装置インストール/走行 (0.6mSv/h):20分	1	2人以上	1班			
77	【2号機】調査装置をバック走行し残置B1装置乗越	5分	5人	装置インストール/走行 (0.6mSv/h):10分	0.5	1人以上	1班			
78	【2号機】調査装置をエアロック前までバック走行	10分	5人	装置インストール/走行 (0.6mSv/h):20分	1	2人以上	1班			

表77 モックアップ試験での作業実績と想定被ばく量(2号機での調査作業)

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(10/13)

<u>表78 モックアップ試験での作業実績と想定被ばく量(調査装置2号機の洗浄及びアンインストール作業)</u>

		MU試験		現地での作業想定				
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定
		1	2	③(=①×2(MUの2倍想定))	$(=2\times3)$	(5)(=④/0.5)		
79	【2号機】調査装置洗浄	20分	7人	装置心ストール/走行 (0.6mSv/h):40分	2.8	5.6人以上	1班	10
80	【2号機】調査装置装置をPCV内からアンインストール、 グローブボックス作業(350A)	30分	8人	装置インストール/走行 (0.6mSv/h):60分	4.8	9.6人以上	2班	

表79 モックアップ試験での作業実績と想定被ばく量(調査装置2号機の搬出作業)

		MU試験		現地での作業想定					
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数	
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		ī	
81	【2号機】調査装置制御盤等のケーブル解線	15分	6人	西側通路(2mSv/h):10分 エアロック室(0.57mSv/h):20分	3.14	6.2人以上	2班		
82	【2号機】調査装置用シールボックスのフランジ接続切り離し (350A)	10分	4人	エアロック室(0.57mSv/h):20分	0.75	1.52人以上	1班		
83	【2号機】調査装置用シールボックスとケーブルドラム切り離し、シート養生(350A)	30分	6人	エアロック室(0.57mSv/h):60分	3.42	6.9人以上	2班	2日	
84	【2号機】ケーブルドラム吊上げ、調査装置用シールボックス搬 出(350A)	20分	7人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 30分	4.33	8.7人以上	2班		
85	【2号機】ケーブルドラム搬出(350A)	10分	7人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 10分	3	6.0人以上	1班		

©International Research Institute for Nuclear Decommissioning

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(11/13)

		MU	試験		現地での作	業想定	-	
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6夕)	想定日数
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		ЦЖ
86	穴カバー設置装置用シールボックス搬入・エアロック室内へ 設置(350A)	30分	7人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 50分	5.66	11.3人以上	2班	
87	穴カバー設置装置シールボックス(350A)の漏えい確認	5分	5人	エアロック室(0.57mSv/h): 10分	0.48	1人以上	1班	
88	穴カバー設置装置をPCV内ヘインストール及び穴カバー回収 作業(350A)	25分	7人	装置インストール/走行 (0.6mSv/h):50分	3.5	7人以上	2班	2日
89	穴カバー設置装置をPCV内からアンインストール(350A)	10分	5人	装置インストール/走行 (0.6mSv/h):20分	1	2人以上	1班	
90	穴カバー設置装置用シールボックスを取外し、搬出(350A)	20分	6人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 30分	3.71	7.4人以上	2班	

表80 モックアップ試験での作業実績と想定被ばく量(穴カバー回収作業)

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(12/13)

<u>表81 モックアップ試験での作業実績と想定被ばく量(ケーブル送り装置洗浄及び回収作業)</u>

		MU	式験		現地での作	業想定		
	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		1 22
91	ケーブル送り装置洗浄	15分	7人	装置インストール/走行 (0.6mSv/h):30分	2.1	4.2人以上	1班	
92	ケーブル送り装置をPCV内へアンインストール(250A)	20分	8人	装置インストール/走行 (0.6mSv/h):40分	3.2	6.4人以上	2班	2日
93	ケーブル送り装置用シールボックスを取外し、搬出(250A)	20分	7人	西側通路(2mSv/h): 10分 エアロック室(0.57mSv/h): 30分	4.33	8.7人以上	2班	

表82 モックアップ試験での作業実績と想定被ばく量(屈曲ドームカメラ回収作業)

		MU	式験		現地での作業想定							
No.	96	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数				
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		цХ				
94	屈曲ドームカメラをPCV内からアンインストール(200A)	15分	7人	装置インストール/走行 (0.6mSv/h):30分	2.1	4.2人以上	1班	1 🗆				
95	屈曲ドームカメラ用チャンバを取外し、搬出(200A)	15分	6人	西側通路(2mSv/h):5分 エアロック室(0.57mSv/h):25分	2.57	5.1人以上	1班					

No.126

(2) 被ばく量の算出(各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数)(13/13)

表83 モックアップ試験での作業実績と想定被ばく量(盤関係搬出、α汚染ハウス・吊架構解体搬出、スロープ撤去)

		MU	試験		現地での作	業想定		
No.	作業内容	時間	人員	エリア:時間	被ばく量(mSv)	必要人員 (作業者1人当たり0.5mSv)	必要班数 (1班6名)	想定日数
		1	2	③(=①×2(MUの2倍想定))	$(4)(=2\times3)$	(5)(=(4)/0.5)		цХ
96	ケーブル送り装置機器(制御盤)をエアロック室内から 搬出、モニタラック、ケーブル類の解体・搬出	20分	3人	西側通路(2mSv/h):15分 エアロック室(0.57mSv/h):25分	2.57	5.1人以上	1班	
97	α汚染ハウス解体、吊架構解体・搬出	70分	10人	西側通路(2mSv/h): 30分 エアロック室(0.57mSv/h): 110分	20.5	41人以上	7班	3日
98	スロープ撤去	35分	5人	西側通路(2mSv/h): 70分	11.67	23.4人以上	4班	
99	調査装置用機器(エアユニット・制御盤)を西側通路奥 から搬出	10分	3人	西側通路(2mSv/h):20分	2	4人以上	1班	

(3) 現地工程

各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数を基にした現地工程を以下に示す。 表84 現地工程案(1/2)

調査装置号機		1	2	3	1	5	6	7	8	9	10	11	12	13 1	14	15 1	6 17	18	19	20	21	22	23	24	25	26	27	28	29 3	30 3	1 32
	【①動作確認】								ĺ																						
-	・Tタウンでの各装置動作確認																														
	【②エリア区画作業】																														
	・エアロック室、西側通路養生作業																														
-	・遠隔室準備																														
	・電源準備																														
	・機材受入																														
	【③スロープ・吊架構設置】																														
	・スロープ設置																														
_	・吊設備設置																														
	・α対策ハウス																														
	【④手摺切断】																														
	・手摺切断装置取付(250A)																														
	・屈曲カメラ取付(350A)																														
-	・アンカー打設																														
	・各装置耐圧																														
	・250A手摺切断																														
	・手摺切断装置搬出(250A)																														
	【⑤鉛毛マット除去】																														
	・ケーブル送り装置取付(250A)																														
	・鉛毛マット除去装置取付(200A)																														
-	・アンカー打設																														
	・各装置耐圧																														
	・ケーブル送り装置インストール																														
	・鉛毛マット撤去																														
	【⑥穴カバー設置】																														
	・屈曲カメラ移設(350A⇒200A)																														
	・穴カバー装置取付(350A)																														
_	・アンカー打設																														
	・装置耐圧																														
	・屈曲カメラインストール																														
	・穴カバー設置																														
	・穴カバー装置搬出(350A)																														

(3) 現地工程

各作業ステップ毎の被ばく量と必要作業班体制(案)、想定日数を基にした現地工程を以下に示す。

調査装置号機		33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
	【⑦調査装置設置インストール】																		
	・ケープルドラム搬入																		
	・調査装置SB搬入																		
1 中 城	・調査装置SB/ケーブルドラム組付け																		
1万悈	・調査装置SB/ケーブルドラム取付(350A)																		
	・アンカー打設																		
	・耐圧確認																		
	・調査装置インストール																		
1 中 城	【⑧南側放射線計測】ペデスタル内調査																		
1万悈																			
	【⑨調査装置洗浄・アンインストール】																		
1号機	・装置洗浄																		
	・調査装置アンインストール																		
	【⑩調査装置1号機⇒2号機入替】																		
	・窒素置換																		
	・調査装置SB/ケーブルドラム切離し																		
	・1号機調査装置SB搬出																		
	・1号機ケーブルドラム搬出																		
入替	・2号機ケーブルドラム搬入																		
	・2号機調査装置SB搬入												1						
	・調査装置SB/ケーブルドラム組付け																		
	・調査装置SB/ケーブルドラム取付(350A)																		
	・耐圧確認																		
	・調査装置インストール																		
2日総	【①南側点群計測】ペデスタル内調査																		
2 万悈																			
	【⑫調査装置洗浄・アンインストール】					~													
2号機	・調査装置洗浄																		
	・調査装置アンインストール																		
	【⑲調査装置搬出】																		
	・窒素置換																		
-	・調査装置SB/ケーブルドラム切離し																		
	・2号機調査装置SB搬出																		
	・2号機ケーブルドラム搬出																		

<u>表85 現地工程案(2/2)</u>

(4) まとめ

モックアップ試験成果を以下に示す。今後実施予定の"作業訓練"、"現地調査"に必要な仕様の検討が 完了した。

確認項目	モックアップ試験成果	備考
調查装置·調查付帯装置仕様	調査装置・調査付帯装置仕様が確定した。	6.2.3~21項参照
現地調査作業手順	現場環境や作業リスクを考慮し、適切な作業手順を 決定した。	
作業員被ばく量	各作業の作業時間、作業人員、エリア雰囲気線量から想定被ばく量を算出した。	6.3項(1)~(3)参照 タ種栓試を実施した
作業人員/作業班体制	想定被ばく量から必要な作業人員、作業班体制を算 出した。	合性快討で天心しに
作業工程	現地調査作業工程を算出した。	

表86 モックアップ試験成果まとめ

No.130

(1)目的

ペデスタル内調査装置及び付帯装置に使われる電子機器(カメラ他)について(2)の内容を検証する。

(2)試験内容

- 1)カメラ映像確認試験(ノイズ確認)
 - PCV内(8Gy/h)、ペデスタル内(100Gy/h)環境下でペデスタル内調査装置等に使用される電子機器 (カメラ)が調査に耐えうる映像状況であるか検証する。
- 2) 電子機器 (カメラ等) 耐放射線性確認試験
 - ペデスタル内調査装置等に使用される電子機器(カメラ他)の耐放射線性を試験で確認し、モックアップ 試験結果から算出した現地工程案(6.3(3))に対し、ペデスタル内調査装置の耐放射線性が十分であるか 検証する。

(3)耐放射線性確認対象機器

ペデスタル内調査で使用する装置のカメラ、モータ等や付帯装置で使用される耐放射線性対象機器を以下に示す。


```
<u> 図94 対象機器(点群データセンサ)</u>
```

No	品名	型式·仕様	No	品名	型式·仕様
1	クローラ用モータ	RE25、ギアヘッド、DCタコ	8	チルト用モータ	TC-101C-CU-200
2	調査用カメラ	Ф20LED付CMOSカメラ	9	パン用モータ	
3	ロッド伸長方向カメラ		(10)	先端ケーブル送りモータ	TG85E-SU-114-KA
4	後方監視カメラ	Ф13LED付CMOSカメラ	1	LEDテープライト	TL-09-090A50K-L138
5	前方監視カメラ		(12)	切断監視カメラ	手摺切断監視
6	ロッド伸長量監視カメラ	Ф8LED付CMOSカメラ	(13)	屈曲ドームカメラ	作業監視用
7	レーザーポインタ	LMA-A12-515-3	14	点群センサ	Realsense D435

<u>表87 耐放射線性確認対象機器名</u>

©International Research Institute for Nuclear Decommissioning

(4)ペデスタル内調査における調査装置の想定集積線量(モックアップ試験結果を基にした改訂1) モックアップ試験結果を基に、調査装置のPCV内作業時間、PCV内の線量率から電子機器 が受けるガンマ線の集積線量を以下のように想定する。

ペデスタル内 CRD開口

図95ペデスタル内調査ルート(想定)

作業時間 線量率 集積線量 項目 No (hr) (Gy/h) (Gy) 1 インストール 1⇒1 1⇒1 1 X-2~残置B1調査装置 8(**X**1) 2 0.5**⇒0.8** $4 \Rightarrow 6.4$ 残置B1調查装置近傍調查 3 0.5⇒1.0 8(X1) 4⇒4 残置B1調査装置~CRD開口 4 1⇒1.3 8(X1) 8⇒10.4 ペデスタル内調査 5 100~ 100(**×**2) 1~2⇒1 **200⇒100** 帰路 6 3⇒1.8 8(X1) $24 \Rightarrow 14.4$ PCV内待機時間 7 89 8 712 合計:848.2Gy ※1:B1調査計測値(2015/04計測) ※2:推定值 計画時では推定線量140~240Gyを想定していたが、 調査装置の耐放射線性は850Gy以上必要

©International Research Institute for Nuclear Decommissioning

<u>表88ペデスタル内調査時間、線量率(推定)</u>

(5)ペデスタル内調査における手摺切断装置、屈曲ドームカメラの想定集積線量 (4)と同様に屈曲ドームカメラ、手摺切断装置監視カメラについても評価を実施した。

表89 ペデスタル内調査時間、線量率(手摺切断装置、屈曲ドームカメラ)

切断装置監視カメラの耐放射線性は24Gy、 屈曲ドームカメラの耐放射線性は280Gy以上必要

©International Research Institute for Nuclear Decommissioning

(6)カメラ映像確認試験(ノイズ確認)

- 1) 試験条件
 - ①雰囲気線量

表88 ペデスタル内調査時間、線量率(想定)からペデスタル内100Gy、ペデスタル外8Gy/hとして 照射線量を設定した。(図96作業時の雰囲気線量)

②判定基準

図97のチャートを用い、映像上でノイズ有無、画面の乱れの有無を確認した。

③対象機器

表87中の②調査用カメラ(100Gy/h)、④⑤前後方向監視カメラ(10Gy/h)、⑪切断監視カメラ(10Gy/h)、 ⑬屈曲ドームカメラ(10Gy/h)

<u> 図97 映像確認チャート(ISO12233)</u>

©International Research Institute for Nuclear Decommissioning

6.4 調査装置及び付帯装置の耐放射線性について (6)カメラ映像確認試験(ノイズ確認)

2)試験結果

10Gy/h雰囲気においては、ノイズが若干確認されるが視認性に問題なし。100Gy/h雰囲気においては、 ノイズ影響が大きい結果となった。

©International Research Institute for Nuclear Decommissioning

No.136

6.4 調査装置及び付帯装置の耐放射線性について

(7)耐放射線性確認試験

1)試験条件

①照射量

加速試験として各カメラ、機器に対し1000Gy/hの線量率で照射した。

②判定基準

各カメラの映像を監視しながら映像が遮断されるまで照射を実施した。

照射時のカメラ映像の一例を図99に示す。

③対象機器

表87中の②調査用カメラ、④⑤前後方向監視カメラ(10Gy/h)、①切断監視カメラ、③屈曲ドームカメラ

<u>図99 1000Gy/h照射中の状況</u>

(7) 耐放射線性確認試験

2)試験結果

各種カメラ及びモータ類は、想定集積線量超える故障線量となった。 点群センサ(④)については、故障線量が想定集積線量を下回った。

表90 各機器の故障線量

No	品名	照射量(Gy) ^{※2}	想定集積線量(Gy)	判定	No	品名	照射量(Gy)	想定集積線量(Gy)	判定
1	クローラ用モータ	5500	750	0	89	チルト用モータ	5500	850	0
2	調査用カメラ	1230	850	0	(10)	先端ケーブル送りモータ	5500	750	0
3	ロッド伸長方向カメラ				(1)	LEDテープライト	5500	750	0
4	後方監視カメラ	1280	750	0	(12)	切断監視カメラ	730	25	0
5	前方方向カメラ				(12)'	切断監視カメラ	2700	25	0
6	ロッド伸長量監視カメラ	1550	750	0	(13)	屈曲ドームカメラ	410	280	0
$\overline{\mathcal{O}}$	レーザーポインタ	5500	750	0	14	点群センサ	290(※1)	850	x

(※1):点群センサは110Gy/hで照射※2:照射量(Gy)=故障線量(Gy)

(8)まとめ

映像確認試験、耐放射線性確認試験を実施し、以下の結論を得た。

- 1)カメラ映像確認試験(ノイズ確認)
 - ペデスタル外(照射率10Gy /h)で使用する調査装置のカメラ及び付帯設備のカメラは問題なく作業可能な 視認性であることを確認した。ペデスタル内(照射率100Gy /h)のノイズに対しては、画像処理等の対策が 必要となることを確認した。

2) 耐放射線性試験

- ペデスタル内調査装置等に使用されるカメラの耐放射線性は想定の集積線量より大きく、使用可能であることを確認した。
- 点群データセンサは想定集積線量を満たしてないため、以下の検討が必要であることを確認した。
- ① 電源OFF時の集積線量確認試験
 - ⇒電源OFF時に放射線線量の影響が低減することが無いか確認する。
- 現場調査工程の低減検討
 - ⇒調査装置2号機(点群データセンサ)による現場調査を24時間体制で実施することを検討する。 (調査時の待機時間における照射量を削減可能(表77の調査工程参照))

●目標に照らした達成度

工場内検証試験及びモックアップ試験の結果、要求仕様を満足することを確認した。成果概要を以下に示す。

実施項	∃	成果	22年度末
ペデスタル内部詳細調査 計画・開発計画の策定、更	調査計画の策定 (TRL3~4)	①ペデスタル内調査対象(気中部、水中部) ②ペデスタル内調査計器(カメラ、線量計、点群データセンサ)	完了
新	開発計画の策定 (TRL3~4)	 ①調査装置コンセプト(クローラ式、伸長ロッド) ②調査付帯装置コンセプト (穴カバー、ケーブル送り、鉛毛マット除去、監視カメラ、等) ③開発全体工程(案) ④モックアップ試験設備(案)、検証内容(案) 	完了
ペデスタル内部詳細調査 のためのアクセス・調査装 置及び調査技術の開発	アクセス・調査装置 の詳細設計、製作、 単体試験(TRL3~4)	 ①調査作業要領(案) ②調査装置の仕様(案) 	完了
	モックアップ試験 (TRL5)	 1 調査作業要領 2 調査装置仕様 3 調査作業ステップ、作業時間、作業員人数 	完了
	現場実証 (TRL対象外)	①現場実証計画(案) (現場実証作業者人数(案)、工程(案)、推定被ばく量)	完了

<u>表91 成果概要</u>

©International Research Institute for Nuclear Decommissioning