

IRIDにおける福島第一原子力発電所廃炉 に関わる技術開発状況

(3)デブリ性状把握に係る技術開発

2014年9月10日

鷲谷 忠博

日本原子力研究開発機構(JAEA) 国際廃炉研究開発機構(IRID)

IRID

©International Research Institute for Nuclear Decommissioning

JAEA

燃料デブリ性状把握の目的

IRID

IRID

1F炉内デブリ性状の推定(熱力学平衡計算)

IRID

U模擬デブリの調製・性状把握

、実際の1F状況とは異なる可能性があります。

U模擬デブリの調製・性状把握

混合組成

焼結密度

 (g/cm^3)

相対密度

(%TD)

~97

~96

~94

晶

U/(U+Zr)割合

0.5~0.6,

0.1~0.15

0.15, 0.3, 0.5

0.12~0.18, 0.3

● 模擬デブリの調製

40µm

・焼結法やアーク溶解法により (U_{0.5}Zr_{0.5})O₂ 8.52
 (U,Zr)O₂等の模擬デブリを調製 (U_{0.4}Zr_{0.6})O₂ 7.94
 、性状を評価 (U_{0.15}Zr_{0.85})O₂ 6.48

焼結法

 $(U_{05}Zr_{05})O_{2}$

相

立方晶+正方晶+単斜

立方晶(準安定相?)

正方晶+単斜晶

$UO_2 + ZrO_2 \rightarrow (U,Zr)O_2$

500x 20.0 µ m KU; 8.3wv 5xV 2012/08/17 14:59:17 1

- $Zr+UO_2 \rightarrow \alpha$ - $Zr(O)+\alpha$ -U+UO₂
- ・アーク溶解法、及び焼結法による緻密な(U,Zr)O2模擬デブリを調製。
- ・ U/Zr比、酸素分圧等による模擬デブリの相、組織、分布状態等のデータを蓄積

模擬デブリによる機械的特性等の測定

ウランやジルコニウムを用いて模擬デブリを作成、種々の組成等のパラメータを振りながら、 、考えられる燃料デブリの物性データを取得。

1F燃料デブリ特有現象の検討(1/2)

●模擬デブリと海水塩の高温反応

デブリ表面で海水が蒸発して塩が析出した状況を想定た基礎データを取得。

- ・蒸固した海水塩に(U,Zr)O2模擬デブリペレットを浸漬し、
 815 1395℃で保持
- 表面にCa(+Na)の緻密なウラン酸塩層が生成 Ca/Na/U → (Ca,Na)UO_{4-x} or CaNaU₂O_{7-x}
- Uが選択的に反応し、ペレット表層近傍では濃度勾配

模擬デブリペレットの塩浸漬

RI

国際協力を用いたMCCI生成物の特性把握

● CEAのMCCI試験と1F条件の比較

1FのMCCI条件(推定)

 コリウム組成
 ⇒Zryが全量酸化したとして ZrO2/UO2 =~0.55程度
 コリウムの冷却条件等により この前後に幅広く分布

表 炉内燃料、構造物の重量

	1 号機
炉内構造物	18 t
UO2	79 t
Zrv	32 t

(東京電力のMAAP入力条件より抜粋)

■ コンクリート組成
 ⇒SiO2はおよそ60%
 骨材、セメントの混合比など
 によって前後する

表 玄武岩系コンクリートの分解 生成物の割合

	成分	割合(%) 9.51 6.7 59.16 8.97					
	CaO						
	MgO						
	SiO2						
	AI2O3						
	H2O	4.9					
	CO2	1.5					
(JNESのCOCOベンチマーク条件より抜粋)							

CEAのMCCI試験施設及び、CEAで保有しているMCCI試験サンプルを利用し、MCCI生成物の基本的な特性を早期に把握。

TMI-2デブリとの比較

● TMI-2デブリを用いた特性データの取得

> 基礎物性、機械的特性データ

SEM-EPMA、XRD、密度等の基礎物性に加え、ビッカース硬度等を取得する。

> 化学特性データ

アルカリ融解等による分析技術の検証を行う。また、元素分析、浸漬データを取得する。

デブリ物性リストの作成								JAEA
密度 気孔率 <mark>≹</mark> (g/cm³) (-)	ビッナ ス硬 (GPa	ア され (1)	ング率 GPa)	破壊 性 (№ m ^{1/2}	靱 ^索 IPa ²) (\	熱伝導 率 W/mK)	比索 (J/Km	热 融点 nol) (°C)
圧力容器内	気孔率	ビッカース	ヤング率	破壊靱性	熱伝導率	比熱		
酸化物	(-)	硬さ(GPa)	(GPa)	(MPa m ^{1/2})	(W/mK)	(J/Kmol)	融点 (°C)	<u>平成25年度まで</u>
a. UO ₂								 ・(U,Zr)O₂系: 焼結体の物性を取得
b. ZrO ₂								
c(U Zr M)O ₂ (立方晶)	?	4-6	190-220	1.1	10	70-90	2865	<u>平成26年度以降</u>
	?	9-12	160-220	3-8	1-3	50-60	2715	・(0,21)02米: 結晶構造での比較や
	?	6-14	160-210	1-3	1-4	Update	2500-2900	、溶融体の物性取得
e. (U,Zr)O2(甲斜晶)	?	Update	Update	Update	Update	Update	Update	に着手。
金属	?	Update	Update	Update	Update	Update	Update	
f. Zircalloy-2	?	9	88	Update	23	25	1855	文献情報でカバー
g. SUS	?	Update	Update	Update	Update	Update	Update	
h. α-Zr(O)	?	Update	Update	Update	Update	Update	Update	平成26年度以降
i Fe ₂ (7rU)	?	Update	Update	Update	Update	Update	Update 🧲	・金属系: 物性取得に着手。
i. Fo 117r	?	Update	Update	Update	Update	Update	Update	
		17_20	Undate	Undate	Undate	Undate	Undate	平成26年度以降
その他セフミック	:	17-20	opuate	opuate	opuate	Opuale	Opuate	・MCCI生成物:
k. ZrB ₂							Ľ	化学形の叙込み及び物性取得に着手。
ペデスタル部(圧力容器外)	?	Update	Update	Update	Update	Update	Update	
酸化物+金属、等					(©International Res	earch Institute fo	r Nuclear Decommissioning
I. MCCI 生成物	.3までに調査・取得したデータに基づき作成されています。 13							

©International Research Institute for Nuclear Decommissioning

まとめ

■ 炉内デブリ状況の推定

 ・ 圧力容器下部では、Zr(O)やFe₂(Zr,U) などの金属成分が多く生成している可能性があり。

■ 模擬デブリによる特性把握

- デブリ取出しに必要な物性値として、密度、機械物性(硬さ、弾性率、破壊じん性)、熱物性(熱伝導度、比熱、融点)を選定。
- 海水塩、B₄C制御材、Pu等の影響を評価。
- TMI-2デブリの特性データを取得中、模擬デブリのデータ等と比較評価。
- MCCI生成物に対する特性把握を加速。(国際協力を利用)

■ デブリ特性データの整理

• デブリ特性データを整理し、1 F炉内のデブリ性状の推定、デブリ取出しPj 等へ反映。

補足資料

金属セラミックス溶融固化体製作及び特性評価

●取出し機器に対して加工が困難と想定される金属/セラミックス不均一溶融固化体を製作し、機器 開発用モックアップ体製作のための材料特性を試験評価し、モックアップ体製作方法を策定する。

実施方法

(1) 金属/セラミックス溶融固化体製作試験

溶解したUO2+Zr混合物(60kg)をステンレス鋼製構造材に落下。 金属とセラミックスが不均一に急冷固化した溶融固化体を製作。

(2) 材料評価

金属とセラミックスの境界部およびその周辺に着目し、断面マクロ・ミクロ観察、化学成分分析、硬さ、破壊靱性測定を実施。

(3) 金属/セラミックス溶融固化モックアップ体設計 機器開発用モックアップ体の材料選定、設計を行い製作仕様を策定。 現有知見に基づく1Fデブリ性状の推定結果から製作条件を設定。

