第2回廃炉地盤工学委員会

国際廃炉研究開発機構(IRID)における 1F廃炉技術開発の状況

令和元年10月28日

国際廃炉研究開発機構(IRID) 奥住直明

この成果は、経済産業省/廃炉汚染水対策事業費補助金の活用により得られたものです。 無断複製・転載禁止技術研究組合国際廃炉研究開発機構

©International Research Institute for Nuclear Decommissioning

1. はじめに

原子炉格納容器内部調査技術開発 (1)既に終了した調査 (2)今後計画している調査

3. 燃料デブリ取り出し技術開発

1. はじめに

2. 原子炉格納容器内部調査技術開発 (1)既に終了した調査 (2)今後計画している調査

3. 燃料デブリ取り出し技術開発

沸騰水型原子力発電所の構造

IRID

1. はじめに

原子炉格納容器内部調査技術開発 (1)既に終了した調査 (2)今後計画している調査

3. 燃料デブリ取り出し技術開発

IRID

9

©International Research Institute for Nuclear Decommissioning

2号機 ペデスタル内上部調査(A2調査 2017.1~2)

IRID

10

2号機ペデスタル内上部調査(A2調査 2017.1~2)

ペデスタル内 上部 (画像処理後)

2号機 ペデスタル内下部調査(A2'調査 2018.1)

プラットホーム下の状況確認

<mark>■調査手順</mark> ①ガイドパイプ挿入 ⇒ ②伸縮式パイプ伸展

→ ② 中福式ハイン 中展
⇒ ③ パンチルトカメラ吊降し ⇒ ④調査

2号機ペデスタル内下部調査(A2'調査 2018.1)

2号機格納容器内底部 (鳥瞰イメージ) 画像:2号機格納容器内底部, ペデスタル内内壁付近

2号機 ペデスタル内下部調査(A2"調査 2019.2)TEPCO

IRID

3号機 格納容器内調查結果

「3号機原子炉格納容器内部調査について(2017年11月30日 廃炉・汚染水対策チーム会合/事務局会議(第48回)報告資料)」より抜粋

1. はじめに

原子炉格納容器内部調査技術開発 (1)既に終了した調査 (2)今後計画している調査

3. 燃料デブリ取り出し技術開発

■格納容器内の水の上を航行して、広範囲に移動可能な ボート型アクセス装置を製作中

ガイドリング取付用の例

- ・ 長さ:約1.1m
- 推力:25N以上

IRID

©International Research Institute for Nuclear Decommissioning

1号機:ボート型アクセス装置(X-2ペネからのPCV内部調査) 潜水機能付ボート型アクセス・調査装置については、機能毎に6種類準備する予定。

IRID

©International Research Institute for Nuclear Decommissioning

1号機:ボート型アクセス装置

アーム型アクセス装置

■制御棒駆動機構メンテナンス用の格納容器貫通部(X-6ペネ)を通じて広範囲にアクセス可能なアーム型アクセ ス装置を製作中

- アーム全長約22 m
- 10 kgまでの調査装置を搭載可能

IRID

アーム型のアクセスルート

■格納容器への接続構造体

以下の機能等を有する接続構造体を 開発中

- ✓ 遠隔で既存のペネフランジに接近・ 取りつく機能
- ✓ 把持機構の耐震性
- ✓ 閉じ込め機能
- ✓ アーム通過性の維持

 府間弁

 日間

 アーム・エンクロージャ

 メー6ペネ

 メー6ペネ

 メー6ペネ

 アーム

アーム型アクセス装置〜製作状況〜

IRID

アーム型アクセス装置〜製作状況〜

矢視A

天祝B 矢視B 矢視B エンクロジャーの製作と組立ての様子

アーム型アクセス装置(イメージ・動画)

圧力容器内部調査技術

■上部から圧力容器にアクセスし内部調査するための要素技術は、
 今後の装置試作に向け、あらかた検証済
 ■加えて側面から圧力容器にアクセスするための要素技術を開発中

側面穴開け調査工法のイメージ

1. はじめに

2. 原子炉格納容器内部調査技術開発 (1)既に終了した調査 (2)今後計画している調査

3. 燃料デブリ取り出し技術開発

デブリ取り出し工法

技術的課題

冠水-上アクセス工法(概念) 気中-上アクセス工法(概念)

 ・
 か射性ダストの閉じ
 込め機能の確保
 ・
 遠隔操作技術の確立
 ・
 被ばく低減・汚染拡
 大防止技術の確立

穴開け~シール設置 取り出し工法への適用イメージ

【横アクセスエ法】トンネル施工技術

- アクセストンネル工法では、重量物のトンネル(約800トン)を原 子炉建屋外から精密な位置制御で送り出し、格納容器へ接続さ せる必要有
- ■橋梁等の工事で実績がある重量物送り出し工法を応用し、狭隘 部に曲がった形状の重量物トンネルを送り出す技術を開発中

トンネル施工技術の要素試験

収納·移送·保管技術

収納缶の設計 ⇒1F固有の課題に対処

- 燃焼度と濃縮度が高い→反応度高
- コンクリートとの溶融生成物→コンクリート中の水分の放射線分解による水素発生
- 海水注入、計装ケーブル他との溶融→塩分の影響、不純物の混入

移送方法(気中-横アクセス工法の場合:例)

IRID

©International Research Institute for Nuclear Decommissioning

デブリ取り出し時の安全確保

IRID

End of presentation