Greetings

This report presents a collection of the results of the Research & Development (R&D) projects which the International Research Institute for Nuclear Decommissioning (IRID) has conducted during FY2014. I would like to take this opportunity to sincerely thank all those who have contributed to IRID's activities on a daily basis.

Since its establishment, IRID has been addressing the pressing R&D challenges presented by the decommissioning of the Tokyo Electric Power Company’s (TEPCO) Fukushima Daiichi Nuclear Power Station (NPS) based on the ‘Mid-and-Long-Term Roadmap towards the Decommissioning of TEPCO’s Fukushima Daiichi NPS Units 1-4’ (‘Mid-and-Long-Term Roadmap’). IRID completed 17 subsidized projects and one in-house R&D project during FY2014 as part of this effort.

IRID has been involved with the three following R&D project categories, promoting interlinkage between projects in an integrated and comprehensive manner, and collaborating with worldwide organizations:

1. Fuel Removal from Spent Fuel Pool
2. Preparation of Fuel Debris Retrieval
3. Treatment and Disposal of Radioactive Waste

As an example, IRID developed a remotely operated robot which enabled us to verify the effectiveness of techniques for conducting decontamination work and surveying contaminated water leakage points inside reactor buildings at the Fukushima Daiichi NPS. Furthermore, in order to determine the location and state of the debris inside the reactors, IRID has been developing devices to use cosmic ray muon detection technology and robots to look inside the primary containment vessel.

In order to efficiently and steadily undertake the unprecedented and extremely difficult – even by global standards – of decommissioning the damaged Fukushima Daiichi Reactors, IRID is ready to play its part in the area of R&D, working in cooperation with the government, the Nuclear Damage Compensation and Decommissioning Facilitation Corporation, and TEPCO.

IRID will continue to steadily push forward with R&D efforts without losing a sense of urgency and with a positive attitude, we will strive to make visible progress in decommissioning efforts, enabling those people in Fukushima forced to live as evacuees to return home at the earliest opportunity, and ensure peace of mind for the society as a whole.

I strongly hope that this report helps a wider audience gain a better understanding of IRID's R&D achievements, and ask you for your continuous guidance and support in our activities.

March 2015

Hirofumi Kenda
President, International Research Institute for Nuclear Decommissioning

Contents

Main R&D Achievements: Subsidized Projects

Key Challenge 1: R&D for Fuel Removal from Spent Fuel Pool
- Evaluation of Long-term Structural Integrity of Fuel Assemblies Removed from the Spent Fuel Pool
- Study of Methods to Process Damaged Fuel Removed from the Spent Fuel Pool

Key Challenge 2: R&D for Preparation of Fuel Debris Retrieval
- Development of Technology for Remotely Operated Decontamination Inside Reactor Buildings
- Development of Repair and Water Leakage Stoppage Technology for Leakage Points Inside the Primary Containment Vessel
- Full-scale test for Repair and Water Leakage Stoppage Technology for Leakage Points Inside the Primary Containment Vessel
- Development of Technology for Investigation Inside the Primary Containment Vessel
- Development of Technology for Investigation Inside the Reactor Pressure Vessel
- Identifying Conditions Inside the Reactor through Application of Severe Accident Analysis Code
- Development of Technology for Detection of Fuel Debris in the Reactor
- Development of Technology for Non-destructive Detection of Radioactive Materials Accumulated in the Suppression Chamber
- Development of Technology for Retrieval of Fuel Debris and Reactor Internals
- Development of Technology for Collection, Transfer and Storage of Fuel Debris
- Development of Technology for Evaluating the Integrity of the Reactor Pressure Vessel/Primary Containment Vessel
- Development of Technology for Detection of Fuel Debris in the Reactor Pressure Vessel/Primary Containment Vessel
- Development of Technology for Criticality Control in Fuel Debris Retrieval
- Development of Technology for Fuel Debris Characterization and Treatment
- Development of Technology for Analysis of Debris Properties

Key Challenge 3: R&D for Treatment and Disposal of Radioactive Waste
- Development of Technology for Treatment and Disposal of Accident-generated Waste

Main Study Results: In-house R&D Activities
- Analysis of Contaminated Objects Sampled from Reactor Buildings

Others - Data Sheet
- Main Research Results Announced/Published in FY2014
- Main R&D Installations/Equipment
- Joint Research/Contract Research
Main R&D Achievements

Key Challenge 1: R&D for Fuel Removal from Spent Fuel Pool

Evaluation of Long-term Structural Integrity of Fuel Assemblies Removed from the Spent Fuel Pool

Background

Fuel assemblies in spent fuel pools at Units 1-4 at the Fukushima Nuclear Power Station (NPS) have been stored in an environment with water quality different from normal conditions due to the injection of seawater and addition of rubble. To achieve long-term storage of fuel assemblies in a common pool in future, it will be necessary to accurately evaluate the effects of these conditions on fuel assembly component materials and the integrity of the fuel assemblies for long-term storage.

Aims

In order to determine if fuel assemblies retrieved from the spent fuel pools in Units 1-4 at the Fukushima NPS can be stored safely or not, it will be necessary to perform corrosion tests and investigate actual fuel in an environment that simulates real storage conditions. Through these tests, the structural integrity of fuel assembly components during long-term storage stored in a common pool can be assessed.

Main Achievements

1. Technical development for the evaluation of the long-term integrity of the fuel assemblies
 a. Development of technology to assess long-term integrity
 As a large load is placed upon the upper and lower sections of fuel assemblies when they are handled, the integrity of these parts is extremely important. To make sure no problems would arise due to the spent fuel pool water quality or rubble, immersion tests (up to 8,000 hours) and strength tests using a test specimen were conducted, and the integrity of the parts was evaluated. Results showed that there was no corrosion that may affect fuel assembly integrity or degradation due to mechanical stress in the threaded sections and cladding subject to evaluation (Figure 1).
 b. Survey of condition of spent fuel stored in the common pool
 In order to confirm corrosion conditions under long-term storage in the common pool, regarding fuel assemblies retrieved from the spent fuel pool in Fukushima Daiichi NPS Unit 4, surface observations of the fuel assembly, observations of the inner threaded portion surface in crevice areas and measurement of the thickness of the cladding oxide layer were performed. Results of surface observations showed that while a white deposit had formed on spent fuel, there were no issues with external appearance (Figure 2). Furthermore, corrosion was found to have occurred on the inner surface of the threaded section, and measurements of the thickness of the cladding oxide layer showed that when compared with oxide layer thickness in existing fuel stored in the common pool, no increase in thickness had taken place.
 c. Evaluation of integrity of fuel in dry storage
 Tests were conducted to assess hydride precipitation behavior inside cladding material when scratches due to rubble exists and the effect on fuel integrity of the moisture contained in rubble which has penetrated crevice areas under the assumption that spent fuel will be stored in a dry environment. Test results showed that these had only a minimal impact on fuel assemblies in dry storage. Investigations will continue on the aging of materials in the assessment of the integrity of fuel in dry storage.

2. Basic tests related to long-term structural integrity
 a. Evaluation of seawater component transfer behavior on fuel components
 In order to assess the seawater component transfer behavior on fuel components, tests were conducted using simulated scaling (crust) and a tracer. Results showed that the amount of seawater component transferring to the crust and material surface was minimal. In evaluating whether there is an uptake in seawater components to the oxide film that is formed on the fuel assembly cladding surface or not, confirmation tests that take the heat generated inside the fuel assemblies into account were conducted, and it was found that there was no significant uptake that occurred.
 b. Evaluation of effect of corrosion derived from seawater or rubble components under radiation environment
 The results of an evaluation of fuel material taken from new fuel assemblies that were in the Fukushima Daiichi NPS Unit 4 spent fuel pool showed no signs of corrosion or loss of integrity. Additionally, results of electrochemical tests conducted under radioactive conditions confirmed that in room temperature water that contains a chloride ion content of less than 100ppm, repassivation potential for crevice corrosion was greater than steady-state corrosion potential, and that crevice corrosion did not occur. (Figure 4) It was also confirmed that even after 1,500 hours of corrosion testing, no signs of corrosion were observed.

Future Developments

In order to ensure that fuel assemblies retrieved from spent fuel storage pools in Fukushima Daiichi NPS Units 1-4 can be safely stored, material taken from spent fuel in Unit 4 will be transported to a “post-irradiation test facility” and studies of white deposits observed in surface observations and so on will be performed. Additionally, tests are planned to be performed on applicable fuel assemblies that take combined environmental factors into consideration in order to evaluate the integrity of fuel assembly components during dry storage.
Study of Methods to Process Damaged Fuel Removed from the Spent Fuel Pool

Background
In addition to having been contaminated with impurities such as seawater and concrete, spent fuel in Units 1-4 may have also been damaged due to falling debris. In order to determine how this damaged fuel is to be dealt with, it is necessary to confirm whether reprocessing the fuel is technically feasible or not as one of the treatment methods.

Main Achievements

1. Evaluation of corrosive influence of impure substances on re-processing equipment

Corrosion tests (immersion, electro chemistry) was conducted on materials in high-level concentrated waste liquid storage tanks and high-level liquid waste storage tanks, using simulated high-level liquid waste solutions that took into account impurities and fission products, etc. Under all conditions, results showed that while there was uniform corrosion in the form of intergranular corrosion, pitting was not observed (Figure 1 (1)). Furthermore, an increase in chloride ion concentration was accompanied by a decrease in corrosion (Figure 1 (2)).

2. Evaluation of in-process behavior of impurities

In order to understand the effect of the transition of impurities to uranium/plutonium (U/Pu) products and the impact of impurities on the extraction of U/Pu, solvent extraction testing took place using a simulated solution with added impurities and fission products in addition to a simulated solution to which U/Pu had been added. The results of these tests confirmed that impurities had a low distribution ratio of 10^{-2} to 10^{-3} and they were hard to be extracted into the solvent, and that the distribution ratio of U/Pu was not dependent on the presence of impurities (Figure 2).

3. Evaluation of the influence of impurities on waste body

To determine the composition of waste solutions assumed to be handled at domestic reprocessing facilities (pressurized water reactor with 45,000 MWd/ U burn-up), a glass specimen was created from a formulation of powder materials with the major components of seawater and mortar added as impurities, and an evaluation of homogeneity and of glass property values was then performed. The result was that, under all conditions, there was no phase separation precipitation, and vitrification occurred, and there was no effect of impurities on the physical property data of the glass (Figure 3).

* This composition was used in order to make comparisons with previous tests. It was previously confirmed that there is no difference between the results of this test and in the case found at the Fukushima Daiichi NPS.

4. Identifying and outlining of other influences

Influences expected at reprocessing facilities at the time of processing damaged fuel were comprehensively identified and the presence of those influences and elements of research are clarified. The result was that there were no new research elements outside of the existing evaluation items; evaluating the handling of used fuel, evaluating the corrosive impact on reprocessing equipment due to impurities, evaluating in-process behavior, or waste impact assessment.

Future Developments

Through evaluation tests to date, it has been possible to obtain key data (if impurities will impact on the chemical treatment process, etc.) necessary to determine if reprocessing is feasible. The necessity of investigating issues related to the handling of damaged fuel and so on will be determined in light of the results of confirmation of the state of fuel in the spent fuel pool of Unit 3 that is planned for future retrieval.

Figure 1 High-level liquid waste storage tank immersion test results (Immersion time: 960h)

- RRP: Rokkasho Reprocessing Plant; TRP: Tokai Reprocessing Plant

Figure 2 Outcome of evaluation of the in-process behavior of impurities

Figure 3 Evaluation of homogeneity results using glass specimen containing seawater/mortar components.

Figure 4 Evaluation of homogeneity results using glass specimen containing seawater/mortar components.
Main R&D Achievements

Key Challenge 2: R&D for Preparation of Fuel Debris Retrieval
Development of Technology for Remotely Operated Decontamination Inside Reactor Buildings

Background
In the lead-up to retrieving fuel debris from Units 1-3 at Fukushima Daiichi, various tasks are planned to take place inside the reactor buildings. In order to perform these tasks smoothly, improving the working environment is essential. An overall reduction in radiation levels is sought through a combination of decontamination, shielding, and removal of radioactive sources.

Aims
Improvements/verification tests of equipment for decontamination of high places and production/verification tests of equipment for decontamination of upper floors based on R&D achievements obtained up to FY2013 is to be conducted. Through these steps, remotely controlled decontamination techniques required for the smooth implementation of surveys and repairs planned to take place inside reactor buildings will be established.

Main Achievements
Remotely operated decontamination equipment is used in (1) lower parts of the first floor, (2) upper parts of the first floor, (3) upper floors, and (4) basement areas (Figure 1). Prior to FY2013, (1) completing development for lower parts of the first floor, (2) production/element testing of decontamination equipment for upper parts of the first floor and (3) design of decontamination equipment for upper floors were conducted. Based on the results of these actions, the following tasks were undertaken during FY2014:

1. Development of decontamination equipment for high places
 a. Improvement of decontamination equipment
 Improvements were made to the three types of decontamination equipment for high places produced during FY2013 (high pressure water jet, dry ice blast, and suction/blast) in preparation for their actual application. These improvements included the production of a transfer unit for the high pressure water jet equipment and improvements to the operability of dry ice blast during traveling or decontamination. In addition, there was a reduction in the size of the hose reel section in the suction/blast decontamination equipment (Figure 2).
 b. Verification testing of decontamination equipment
 A mockup test facility was produced (Figure 3) and verification tests took place. Equipment to be evaluated during actual operations was identified, and mockup equipment was produced taking the priority and applicability into consideration. Decontamination performance, traveling performance/operability when remotely controlled and safety functions were evaluated during verification tests to confirm required performance.

 Test results confirmed the effective range of decontamination of high places using the high pressure water jet and dry ice blast equipment. The workability of the suction/blast decontamination equipment on the primary construction target of wall surfaces after obstacles have been removed was also confirmed. Through these tests, the goal of confirming applicability to the actual plant was obtained.

2. Development of decontamination equipment for upper floors
 Plans are in place to introduce an elevating work cart from the open equipment hatch to access the upper floors of the reactor buildings (2nd and 3rd floors) where decontamination of the floor and wall surface (approximately 2 m in height) will be performed. At the present time, work is progressing on developing ways to utilize the same carts for decontamination technology developed for the decontamination of low areas (high pressure water jet, dry ice blast, and suction/blast).

 Specifically, production of equipment based on methods of accessing upper floors and designs considered during FY2013 commenced. Equipment is comprised of a shared cart (work cart/transport cart/support cart/relay cart) and each decontamination unit (Figure 4). Production of the equipment will be completed during FY2015, and will then go through a verification testing process.

3. Conceptual study on decontamination equipment for basement areas
 In future, a drop in groundwater levels around the reactor buildings due to the operation of the bypass system and the ground freezing method is expected, and the stagnant water level inside the reactor buildings must therefore also be lowered in response. However, this may result in a rise in dust and in radiation levels inside the buildings. A conceptual study was therefore conducted on dust diffusion reduction measures for basement areas and decontamination work when required in basements.

Future Developments
In addition to identifying challenges through verification tests and implementing steps to deal with these, equipment for the decontamination of high places will be utilized at the Fukushima Daiichi NPS according to the required purpose and timing. Equipment for the decontamination of upper floors will be completed during FY2015 and verification testing on mock-ups conducted. Additionally, consideration of the necessity of developing new technologies for the decontamination of basement areas will continue.
Development of Repair and Water Leakage Stoppage Technology for Leakage Points Inside the Primary Containment Vessel

Background
It is assumed that fuel debris at the Fukushima Daichi NPS has not only fallen down within the reactor pressure vessel (RPV), but also made its way into the primary containment vessel (PCV). A plan exists to submerge the PCV in order to retrieve the fuel debris; however, it is necessary to ensure that there is no water leakage from the PCV prior to this step.

Aims
This plan aims to establish technology that enables the repair of water leakage points in the PCV that will allow for the retrieval of fuel debris in a submerged state.

Main Achievements
1. Technology for strengthening the suppression chamber (S/C) support columns
 In conjunction with the “Development of Technologies for Assessment of the RPV/PCV Integrity” R&D project, the reinforcement material placing height (height to which the material needs to be filled to support the S/C in the torus room) was set to the upper support column pins and target compression strength was established (Figure 1). Looking ahead, casting tests and developments made in order to execute construction of the reinforcements will continue.

2. Study on the circulation cooling system
 A conceptual study of PCV circulation cooling equipment and water intake was conducted. Based on this study, a conceptual diagram outlining construction steps will be created (Figure 2) in conjunction with an examination of the repair of each leakage point (stopping water leakage).

3. Water stoppage technology involving injection of sealing material into the vent pipe
 Tests conducted based on an auxiliary sealing material deployment improvement plan showed that there is a likelihood of further improvements to the deployment of the material. A one-half scale model was used for water stoppage testing, and successful patterns of achieving a reduction in leakage are being verified (Figure 3). Looking ahead, water stoppage tests and developments to execute construction of the reinforcement will continue. In addition, element testing for filling the S/C to prevent water leaks (stopping water from quencher/strainer/downcomer) is being performed sequentially. Following this, tests using a full-scale model were conducted in preparation for the execution of actual construction.

4. Water stoppage technology involving injection of sealing material into the vacuum brake line
 A study and sequential testing of methods to improve the stoppage of water leakage using cloth packing with mortar filling and silicon-based material is underway. A flexible type of guide pipe is currently being considered (Figure 4).

5. Water stoppage technology for leakage from the seal section and vent pipe bellow
 Based on the findings and achievements of the preceding fiscal year, test plans for stopping water leakage from the equipment hatch and penetrating upper part of the PCV and sealing the personnel access lock room, are being studied. Water stoppage tests are underway, and developments to execute these plans are progressing.

6. Boundary construction technology for PCV connector pipes
 For this study, AC, RW, and RCW systems were selected. Consideration of water stoppage proposals for each system is ongoing. In addition, water stoppage testing and developments based on study findings are proceeding towards actual construction.

7. Water stoppage technology involving injection of sealing material into clearance between the torus room wall and penetrating pipes
 Applicability was confirmed based on previous test results. Taking into account the actual environment and the current progress of each project, plans are underway to arrange relevant penetration parts taking conditions at the time of construction into consideration, construction feasibility, selection of water stoppage materials, and the necessity of element testing in order to prevent water leakage between rooms. Water stoppage testing will continue towards actual construction.

8. Drywell (D/W) shell repair technology
 Assumptions about the damage caused by such a severe accident are being made, and water stoppage material selection and water stoppage methods are being studied. The feasibility of these methods will be studied sequentially.

9. Establishment of a plan in lead-up to filling the PCV with water
 Considering system configuration at time of submersion, the processes required for planning in the lead-up to filling the PCV with water are being examined. Scenarios at each Unit are being collated, and submergence plans clarified.

Future Developments
In order to establish water stoppage technology for each repair/water leak location, ongoing tests will be performed and challenges will be reviewed, analyzed and evaluated. A strategy to resolve these challenges that emerge in testing will be developed, and steady R&D efforts will continue to ensure there are no issues left unresolved. Additionally, PCV submergence scenarios will be studied for each unit separately and the establishment of water stoppage methods to be executed at the actual plant sought.
Full-scale Test for Repair and Water Leakage Stoppage Technology for Leakage Points Inside the Primary Containment Vessel

Background
In order to prepare for the removal of fuel debris after submerging it in water (submersion method) as part of the steady decommissioning of the Fukushima Daiichi NPS, the establishment of technology to repair and stop PCV leaks is required.

Main Achievements

1. Full-scale mock-up test of equipment to repair/stop leakage in lower part of the PCV
In order to confirm the operability of placement equipment for suppression chamber support reinforcement developed as part of the ‘Suppression chamber support reinforcement technology’ component of the Development of Repair and Water Leakage Stoppage Technology for Leakage Points Inside Primary Containment Vessels’ (development of water leak repair technology) project, this plan involves the use of water in full-scale mock-up tests. To determine test facility specifications this financial year, the knowledge derived from the development of water leak repair technology was incorporated. Figure 1 shows a draft conceptual design of the full-scale test facility.

2. Design/production of full-scale mock-up
In a plan for the design, production, and on-site installation of a full-scale mock-up of the lower part of the PCV at the Fukushima Daiichi NPS Unit 2, this year saw the commencement of a compilation of specifications and detailed design take place in preparation for actual production of the mock-up.

The primary specifications of the full-scale mock-up are as follows:
- The mock is a one-eighth scale model of the suppression chamber including the vent pipes (excluding the bellows), vent head, downcomer and surface of torus room wall at Fukushima Daiichi Unit 2.

3. Study/design/production/installation of required equipment including plumbing and turbid water treatment systems
As full-scale testing requires the simulation of the actual environment in the Fukushima Daiichi Units 1-3 to the fullest extent possible, including dimensions and temperature conditions, the study/design/production/installation of the following equipment is planned. During this financial year, specifications were collated in preparation for production and detailed designs were embarked upon (Figure 2):
- Heating/Feed water equipment: In order to provide the heating function to produce heated water that simulates stagnant water in the Fukushima Daiichi NPS in a full-scale mock-up test, system designs and a deployment plan for equipment that supplies heated water at the required volume were formulated, and a boring survey at the proposed construction site required for the construction application was conducted (Photos 1 and 2).
- Turbid water treatment equipment: As stopping water leakage at the lower part of the PCV is expected to involve the use of grouting material (including cement), water that contains cement is generated after conducting tests. A system design and deployment plan for purification equipment outside the plant that processes the turbid water to a quality that allows for drainage was performed.
- Work floor: As the height of the first floor of the basement in Unit 1 and Units 2 and 3 at Fukushima Daiichi differs, the design and examination of methods of changing the height of the work floor at each Unit (first floor of reactor building) took place.

Future Developments
The design, production and installation of the test facility will continue in parallel with the project to develop repair and water leakage stoppage technology in the lead up to implementing full-scale mock-up tests. In addition to evaluating the applicability to Unit 2 of the status of implementation and results of tests performed after the test facility is completed, the facility will be used for training personnel and is aimed to establish repair and water stoppage technologies for PCV leakage points towards implementation of the submersion method.
Development of Technology for Investigation Inside the Primary Containment Vessel

Background
It is estimated that reactors cores in Units 1-3 have melted and fuel has partially fallen into the RPV and PCV. In particular, it is possible that after fuel debris melted through the bottom of the PCV in Unit 1, they emerged from the inside of the pedestal (which supports the PCV) and spread out of the pedestal opening. However, the actual condition has not been confirmed.

Aims
Video footage, information about radiation dose and temperature have confirmed that, in addition to being a harsh, highly radioactive and extremely humid environment, visibility inside the PCV is limited due to the presence of steam and stagnant water and to it being very dark. Moreover, there is the possibility of unforeseen obstructions that were generated from the accident. In order to overcome these challenges, this project aims to develop technology for the investigation inside of the PCV.

Main Achievements

1. Formulation of a plan for investigation inside the PCV and development of investigation equipment

Needs analysis were conducted for other related projects (Development of Technology for Fuel Debris Retrieval/Reactor Internals, Development of Repair and Water Leakage Stoppage Technology for Leakage Points inside the PCV, etc.) and the results were summarized. To respond to these needs, the outline of PCV access methods for internal investigation and investigation methods were studied. Prospects emerging from the results of these studies and plans were shared with other related projects, and adjustments were made accordingly.

2. Development of investigation devices, etc.

a. Technology for accessing inside the pedestal

Development of devices that enter the PCV in the Fukushima Daiichi Unit 2 and then penetrate into the pedestal to conduct investigations (‘Investigation on platform inside the pedestal’ (A2 Investigation)) is currently underway (Photo 1).

A self-propelled miniature robot will enter via the opening (diameter about 115 mm) of the X-6 penetration (PCV penetrating part), and after traveling through a guide pipe inserted into the PCV, traverse the CRD rail into the pedestal interior. Upon arrival in the pedestal, it is planned that onboard measurement devices (camera, etc.) will gather various types of data. Verification tests are expected to commence in the first half of FY2015.

b. Technology for removal of the shielding block

Prior to installation of the development unit required for the A2 Investigation, removal of the shielding block placed in front of the X-6 penetration via remote control is required. Technology for this purpose (Equipment for removing the X-6 shielding block) is currently being developed (Photo 2).

Preparations are currently underway in preparation for verification testing at Unit 2 in the first half of FY2015.

c. Technology for accessing the pedestal exterior

A shape-changing robot to investigate the pedestal exterior inside the Unit 1 PCV (an investigation device that works on the grating outside of the pedestal (‘B1 Investigation’) was developed (Photo 3).

This robot takes a tubular form as it travels along the existing guide pipe (inner diameter about 100 mm) placed at the X-100B penetration, and changes into a U shape once landing on the grating* on the 1st floor inside the PCV in order to achieve stable maneuvering. It is expected that this will be the first robot to investigate the inside of the PCV of Unit 1, and verification testing is planned for the first half of FY2015.

* Grating: grid-like floor

d. Technology for measurement of fuel debris

Development of fuel debris measurement equipment is underway to understand the position and distribution of molten materials assumed to be fuel debris in extremely harsh environments; darkness, high radiation, rain drops and fog. Taking this severe environment inside the PCV into account, this equipment will employ an optical cutting method and development is progressing towards verification tests after FY2016.

Future Developments
Development will continue in the lead up to verification tests from the X-100B penetration in Unit 1 and the X-6 penetration in Unit 2 scheduled for the first half of FY2015. In addition, device development to further investigate both the interior and exterior of the pedestal inside PCVs will be ongoing.
Development of Technology for Investigation Inside the Reactor Pressure Vessel

Background
In order to develop equipment for their retrieval, information regarding the location, shape and condition of fuel debris and core internals must be understood in advance. However, in addition to the complex reactor internal structure, radiation levels are extremely high, creating a situation that makes it currently difficult to directly obtain information from the inside of the RPV.

Main Achievements

1. Formulation of plan for investigation inside the RPV
Based on related projects such as “Development of technologies for retrieving fuel debris and core internals” and the collating of needs (including fuel debris sampling) from the site (TEPCO), survey locations and items, and the time required for and necessity of surveys were identified.

As a result, survey needs (amount and scope of fuel debris located in the core or lower part of the reactor, etc.) were considered based on the progress of research and development for each project. In addition, the selection of the method of fuel debris retrieval from the site and survey needs (temperature inside the RPV/cooled state of fuel debris, etc.) towards each construction method and equipment design milestone were clarified.

In regard to the sampling of fuel debris, the timing of implementing this task and its purpose and positioning were set out and coordinated with the ‘Analysis of Debris Properties’ project, etc., along with a clarification of the division of roles.

2. Study on investigation methods and Formation of development plan for investigation equipment
A survey of technology that can be applied to investigation inside the RPV stemming from technology developed in the ‘Development of Technology for Investigation inside the PCV’ project and from a FY2013 IRID Request for Information (RFI) was conducted.

Based on this survey, a request for technologies as below that can be applied to investigations inside the RPV was made both within Japan and internationally, and the feasibility of these technologies considered:

(1) Transfer technology of investigation equipment (small diameter pipe expansion/transfer technology)
(2) Investigation support technology (radio communication in highly radioactive environments)

3. Development of investigation devices/equipment

a. Survey technology that utilizes existing routes (pipes, etc.)
Prototype testing of survey devices using existing large-diameter pipes took place. During this financial year, verification of accessibility was conducted by studying travel motion (running devices in horizontal/vertical/elbow situations or through pipes of various diameter), ability to grip surfaces (maintenance of position and posture), and handling of direction change (running through T-junctions, directional control). By assuming that devices will operate in an environment that will expose them to up to 1000 Gy/h, movement mechanisms of a hydraulic (Figure 1) or electric (Figure 2) type was studied.

b. Survey technology that utilizes new routes (opening of holes, etc.)
Element testing took place to verify the feasibility of drilling holes via remote control for the purpose of accessing the inside of the RPV by opening a hole at the top of the reactor containment vessel (Figures 3 and 4).

Future Developments
Based on findings from survey of onsite needs in FY2014, development of technology will continue in the lead-up to early investigation of the reactor well in FY2016 and survey of the RPV interior in and after FY2018.
Identifying Conditions Inside the Reactor through Application of Severe Accident Analysis Code

Background
Identifying conditions inside reactors is essential in the process of formulating measures for fuel debris retrieval and developing safety plans. However, it is extremely difficult to investigate the inside of Units 1-3 at the Fukushima Daiichi NPS directly due to the extremely high radiation levels present.

Main Achievements

1. **Improvement of the MAAP code and accident analysis**
 MAAP (Modular Accident Analysis Program) is an analysis code that enables the consistent evaluation of thermal-hydraulic phenomena/fission product behavior in the RPV or PCV during severe nuclear power plant accidents.

 Improvements were made on a physical phenomenon model assuming that the molten core flowed down and was deposited in the RPV lower plenum after the core was damaged, based on accident progression at the Fukushima Daiichi NPS and analyses of on-site surveys. Then, an accident progress analysis was conducted (Figure 1). From the results of this analysis and on-site investigations, an estimate was made of the distribution of fuel debris in the RPV and PCV (Figure 2).

2. **Improvement of the SAMPSON code and accident analysis**
 SAMPSON (Severe Accident Analysis code with Mechanistic, Parallelized Simulations Oriented towards Nuclear fields) is a model constructed using multi-dimensional mechanistic models and theoretical-based equations that is suited to analyzing the dispersion and properties of fuel debris.

 In order to improve the accuracy of estimates regarding the dispersion of debris contained in the lower part of the RPV, functional improvements to models that combine the RPV and PCV, and improvements to the model analyzing thermal-hydraulic behavior were made. An analysis using a molten core relocation analysis module yielded prediction results that suggest that, after water in the bottom of the RPV evaporates, in core monitor housing is the first site of damage (Figure 2). In order to verify this, tests using real-size penetrating pipes and real corium is planned for the next financial year.

3. **Analysis and evaluation of conditions inside the RPV and the PCV**
 A 3D analysis model that enables analysis of debris lateral erosion inside the concrete floor like sump pit was developed, using as a reference the Molten Core Concrete Interaction (MCCI) analysis module in the SAMPSON code and also through reviewing the fluidic cell boundary condition setting model. CCI test analyses from the OECD/MCCI projects were performed in order to verify the developed model. The results of an analysis of the depth and shape of concrete erosion match test results well, as Figure 3 shows, and confirmed the predictive performance of the developed model.

4. **Tests to simulate the conditions inside the reactor during the severe accident**
 Testing was done to determine the effect that injecting seawater into a reactor, as took place in the Fukushima Daiichi NPS accident, has on thermal-hydraulic behavior. As an example test result, it was found that the difference between the wall temperature (corresponding to cladding tube surface temperature) and fluid temperature grew with an increase in the amount of heat per unit area (heat flux), as Figure 4 shows. It was also found that this difference grew in relation to the increase in concentration of a sodium chloride solution.

5. **International cooperation concerning identifying the condition inside the reactor**
 The Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) Project commenced in 2012. A project report containing summarized results of an analysis conducted by the eight participating countries that included a study of the location and amount of fuel debris was released this year (Figure 2). The scope of the BSAF Project will be expanded to include an analysis of the migration behavior of fission products in Phase 2, which will also see 12 countries participating.

Future Developments

The sophistication of severe analysis codes will be further advanced, and an improvement in accuracy of predicting the location of fuel debris and migration of fission product nuclides will be sought. In addition, utilizing data obtained from the actual reactors, comprehensive analysis and evaluation of conditions within reactors will be executed, the results of which will be used to confirm and implement methods of fuel debris retrieval at each unit.
Development of Technology for Detection of Fuel Debris in the Reactor

Background
In order to select effective methods of fuel retrieval, it is important to understand conditions inside the reactors, including the distribution of fuel debris. However, as the radiation level inside the RPV is extremely high, it is very difficult to verify the condition directly.

Aims
This project uses cosmic-ray muons to image and map the distribution of fuel debris inside the RPV from outside the reactor buildings. Using the muon transmission method, it is hoped that fuel debris at Unit 1 can be identified at the spatial resolution of about 1 m and the data obtained will be used to study methods of how fuel debris can be retrieved. A measurement system that uses the muon scattering method will be used to confirm the location of fuel and debris remained in the reactor at Unit 2 (the spatial resolution of about 30 cm).

Main Achievements
1. Development and measurement of a detection system for the transmission method under high radiation
 Testing confirmed appropriate shielding thickness that enables the effective measurement of muons even in radioactive environments (0.4 mSv/h). In addition, a measurement system that can reduce the effects of background gamma radiation by conducting coincidence counting using three-layered 2D resolution scintillation detectors to determine muon transmission position was developed. This measurement system was placed outside the Unit 1 reactor building and the measurement image inside the reactor was conducted. Furthermore, an evaluation of the transmission method measurement performance was conducted (Figures 1 and 2).

2. Development of a large muon tracker under high radiation
 Large-scale muon tracking devices with 7 x 7 m² active sensor areas that use the muon scattering method to image the inside of the RPV from outside the reactor building were developed. The muon trackers are comprised of 3.5-meter drift tube detectors that are joined in two end-to-end to make chambers of 7 m in length. There are 140 of these tube chambers that are arranged to form a 7 x 7 m² active sensor area in a six-layered stack. The gas encapsulated in the detectors is of a type that does not contain hydrocarbons that can be broken down by gamma rays, ensuring resistance to radiation during the period of measurement (Figure 3).

 Two of the muon trackers were placed apart, one above the other, in order to confirm measurement performance (Figure 4).

3. Development of a muon measurement system under high radiation (less than 50 μSv/h)
 As detectors that utilize the scattering method are large in scale, time-coincidence logic incorporated into the electronic circuit to remove high background gamma rays was developed. A combination of coincidence counting in more than four layers and linear reaction patterns allows muon measurements without shielding even at the dose rate of approximately 50 μSv/h. Additionally, in terms of measurement performance, time resolution of less than 2 ns (position resolution of less than 0.1 mm) and a coincidence counting gate width of less than 1 μs were achieved.

4. Development of an estimation technique of fuel debris distribution inside the reactor by muon tracking
 A method of estimating the distribution of fuel debris from measurement values taken at Unit 2 by muon tracking devices was developed. Specifically, taking angular resolution, position resolution and the effect of shielding material into account, the muon scatter angle is evaluated, and fuel debris density contrast images are created by the relationship between the structure composition and the scattering angle of muons as they pass through the structure. In order to evaluate the accuracy of this development approach, the simulation test took place using a 3D model of the reactor; results were then used to predict measurements of the actual site (Figure 6).

Future Developments
While expanding the scope of measurements using the transmission method at Unit 1, detection of fuel debris at Unit 2 (lower part of the RPV and the reactor core) will be conducted using the scattering method. Furthermore, by improving processing algorithms and measurement techniques, the visual range will be expanded, measurement time reduced, and more detailed information provided by resolution improvement. This will contribute to the establishment of measurement technology for the distribution of fuel debris inside the reactors and the selection of efficient methods of fuel removal.
Development of Technology for Non-destructive Detection of Radioactive Materials Accumulated in the Suppression Chamber

Background

In order to repair and stop water leakage in the suppression chamber (S/C), it is necessary to determine the condition of radioactive material that has accumulated inside. However, a method of evaluating conditions has not yet been established. The optimum solution would be a non-destructive examination technique, but it is not clear if deposits of radioactive material that need to be detected can be evaluated using a non-destructive method. Another important issue to be established is approaches that can determine the amount deposited throughout the entire area, including the S/C.

Aims

In order to gather information required for repairs and water leakage stoppage in the S/C, in addition to estimating the condition of accumulated radioactive material present inside the S/C, a method of measurement will be developed.

Main Achievements

1. **Formulation of development plan**

 Developments and work items required for the detection of radioactive materials believed to be indispensable were extracted (Table 1) and development plans were formulated.

2. **Radioactive materials migration scenarios**

 Consideration was given to scenarios involving the migration of radioactive materials into the S/C and torus room (Figure 2). As it is thought that the likelihood of an inflow of radioactive debris that exceeded the acceptable limit was low, by taking measurements of the lower part of the S/C and the region around the sand cushion drain pipe outlet where there is a relatively high probability of radioactive materials having been deposited, it can be confirmed that there are no radioactive materials that exceed the acceptable limit.

3. **Evaluation of impact of radioactive substances on water stoppage material**

 Among the influence factors arising from remaining radioactive materials, there is a concern that even the smallest deposit may exceed the acceptable limit.

4. **Development of technology for detection of radioactive material**

 a. Evaluation on nuclide composition and distribution of radioactive material

 Nuclides originating from fuel (nuclides selected for measurement (Cm-244, Eu-154, etc.), background nuclides, and nuclides in shielding material) were determined using the ORIGEN code. The mix ratio of nuclides originating from fuel and structural materials has been set based on MAAP code analysis results. The S/C and torus room calculation model (Figure 1) is a 3D 1/16 scale representation of the S/C and torus room; this model was used to evaluate neutron and gamma ray flux in the area around the bottom of the S/C (Figure 2).

 b. Evaluation of background radiation

 An assessment of the effect of background gamma radiation (Cs-134, Cs-137) on stagnant water was conducted (Figure 3).

 c. Selection of optimum techniques for detection of radioactive substances

 To measure acceptable background radiation level and radio-sensitivity, a B-10 neutron detector and Ge(Te)LaBr (Ga) gamma-ray detectors were selected as the best choice for the task and their responses evaluated at the locations in a. and b. above.

 d. Study on method of estimating the amount deposited in the S/C

 A comparison between measurements done in the vicinity of locations with a high probability of radioactive material deposits and threshold levels set through the analysis in a. will decide the presence or absence of radioactive material that exceeds acceptable levels.

Future Developments

The possibility of radioactive material that exceeds acceptable levels having flowed into the S/C or torus room is considered low, and it was confirmed that it is technically feasible under the assumed conditions to verify the presence or absence of this material using non-destructive methods. The implementation of measurement systems or design/production of devices to access these areas will be decided based on the results of developments of methods to repair and stop water leakage.

Table 1: Development/work items

<table>
<thead>
<tr>
<th>No.</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design/production of measurement systems</td>
</tr>
<tr>
<td>2</td>
<td>Design/production of access devices</td>
</tr>
<tr>
<td>3</td>
<td>Combination performance testing</td>
</tr>
<tr>
<td>4</td>
<td>Design and production of perforating apparatus</td>
</tr>
<tr>
<td>5</td>
<td>Verification tests</td>
</tr>
<tr>
<td>6</td>
<td>Non-destructive detection work</td>
</tr>
</tbody>
</table>

Table 2: Scenarios where there is a relatively high probability of an inflow of highly radioactive materials

<table>
<thead>
<tr>
<th>Form</th>
<th>S/C</th>
<th>Torus Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melted radioactive substances</td>
<td>Radioactive substances in the drywell reach the S/C vent pipe entrance and flow into the S/C.</td>
<td>Radioactive substances in the drywell erode the PCV shell and sand cushion and flow in via the drain pipe.</td>
</tr>
<tr>
<td>Pulverized radioactive substances</td>
<td>Material moves due to the flow resulting from the injection of coolant water and flows in via the S/C vent pipe.</td>
<td>Material moves due to the flow resulting from the injection of coolant water and flows in via the sand cushion drain pipe.</td>
</tr>
<tr>
<td>Aerosols</td>
<td>Material moves due to the flow of gasses, and flows in via the SR piping or S/C vent pipe, etc.</td>
<td>Material moves due to the flow of gasses, and traversing the S/C flows in via damaged vacuum break line, etc.</td>
</tr>
</tbody>
</table>

Figure 1: Computational scheme

Figure 2: Distribution of nuclides originating from fuel in the vicinity of the S/C (Unit 1)

With the radiation source established as fuel debris, neutron flux and gamma ray flux at the bottom of the S/C were evaluated. It was confirmed that, even in the background environment (Figure 3), Cm-244 (neutrons) and Eu-154 (gamma radiation) could be measured.

Figure 3: Background radiation (Unit 1)

After evaluating background gamma radiation in stagnant water, it was confirmed that radiation levels were high (red zone: around 10⁻⁷/cm²/source) around the stagnant water in the torus room. It was also confirmed that gamma ray flux was almost of a uniform level in both the S/C and torus room.
Development of Technology for Retrieval of Fuel Debris and Reactor Internals

Background
It is believed that fuel debris in the RPV and PCV at the Fukushima Daiichi NPS has not reached criticality at the present time. However, reactor buildings, RPV and PCV suffered damage during the accident, and the plant itself remains in an unstable condition. It is therefore vital that re-criticality is prevented while retrieving fuel debris, and the plant is kept stable to avoid the dispersion of radioactive materials.

Main Achievements
1. Setting of conditions for deciding on fuel debris/reactor internals (hereinafter, ‘debris’) retrieval technology

Consideration of the method of debris retrieval must be based on the situation at each plant and the information obtained from other related projects. Therefore, questions as to what kind of requirements or plant-related information existed and by when these would be clarified were set out. Additionally, in preparation for the commencement of actual fuel debris retrieval in December 2021, the required timing and accuracy of this information was clarified.

2. Designing a plan for finalizing debris retrieval methods

In reviewing debris retrieval, methods were classified into twelve types in terms of the PCV water level and the direction that debris would be accessed from; issues were identified and organized for three representative methods thought to be the most practical (Figure 1). Decision items at the time when debris retrieval methods are used at each plant were pointed out, and each corresponding situation arranged (Table 1).

3. Survey and review of existing technologies

In addition to the technical catalog*, the applicable technologies for debris retrieval were extracted from the types of equipment used at TMI-2, Sellafield and Paks, and existing technologies and proven technologies from outside the nuclear energy field (e.g., medicine).

4. Formulation of development plans for related element technology and equipment

Element testing for technical issues that the twelve scenarios/methods have in common was implemented.

(1) Evaluation test for cutting considering fuel debris collection.
(2) Prototyping of simulated debris for use in cutting evaluation tests, etc.
(3) Position control characteristics evaluation test for access equipment for use in remote controlled work.
(4) The material selection and handling tests of isolating sheet for preventing expansion of contamination (Figure 2).
(5) Prototyping and operational testing of remotely operated arm for supplementary work under very high radiation (Figure 3).

In addition, measures to address issues identified in 2. Designing a plan for finalizing debris retrieval methods were reviewed and a development plan was formulated.

Future Developments
Centered on the important issues of shielding/preventing spread of contamination and remote automation, technology development for the following items will be conducted, looking towards the presentation of a debris retrieval method (procedure) plan in late FY2016.

1. Setting of conditions towards fuel debris retrieval method policy decision
2. Formulation of development plans for related element technologies and equipment
 1. Investigation/study of existing technologies
 2. Formulation of development plans for related element technologies and equipment
 3. Flexibility evaluation on the actual unit/mock-up
3. Study of fuel debris retrieval method/system/equipment

Aims
In the lead-up to the commencement of the mock-up test of fuel debris retrieval methods (planned for FY2018) based on the Mid- and Long-Term Roadmap (June 2013 revision), specific R&D will be undertaken. Under this project, plans for retrieval methods at each plant will be drawn up, and development plans for required equipment and element tests created. In addition, element tests of common technology will be conducted and included in the FY2015 plan.

* The Agency for Natural Resources and Energy will conduct surveys and call for technical proposals publicly for the FY2011 ‘Technical catalog for the development of equipment to prepare for fuel debris retrieval towards the Decommissioning of the Fukushima Daiichi Nuclear Power Station’ as a project related to the Subsidy for Development of the Technological Foundation for Decommissioning and Safety of Nuclear Reactors for Power Generation.
Development of Technology for Collection, Transfer and Storage of Fuel Debris

Background
Fuel debris retrieved from the Fukushima Daiichi NPS is expected to be carried out of reactor buildings and stored until the time when the method of final disposal is determined. For this reason, technology required for the collection, transfer and storage of fuel debris must be established at an early stage.

Aims
Development of storage canisters for the housing of retrieved fuel debris will be based on the established spent fuel transportation and storage technologies. In FY2014, development requirements for storage canisters at the Fukushima Daiichi NPS will be organized, and canister design approaches and basic structural design concepts will be derived.

Main Achievements
1. Study on a fuel debris collection, transfer and storage system
Scenarios for the collection, transfer and storage of retrieved fuel debris studied were as follows: Collection (Submerged/Non-submerged from above/Non-submerged from side) -> Transfer (Wet/Dry/Half-dry) -> Storage (Wet/Dry/Half-dry). In addition to confirming that all scenarios can be feasible, scenarios that are expected to be advantageous were selected in terms of safety, work efficiency and feasibility, etc., for each individual step (Figure 1).

2. Establishment of a storage canister design concept
After studying the work involved in each step of the scenarios described above, it was found that as the collection of fuel debris would take place in highly radioactive environments or in narrow spaces, emphasis would need to be placed on operability in the design process. For this reason, it was thought that the safety function of the storage canisters should be minimum, and the safety would be guaranteed by the surrounding equipment and installations instead. In future, adjustments will progress taking surrounding equipment and installations into consideration (Table 1 and Figure 2).

3. Development of safety evaluation methods
Evaluation methods for determining the shape/confirming applicability of storage canisters were examined. In principle, the design methods for spent fuel transportation casks or the plant design can be used. However, it was found that for part of the safety evaluation, verification data would need to be further expanded. Additionally, it was seen that there are many items dependent on the characteristics of the fuel debris itself (temperature limits, etc.) (Table3).

4. Investigation on the transfer and storage of damaged fuel
In order to carry out 1-3 above, technical information related to the transfer and storage of fuel debris from Three-Mile Island Reactor 2 (TMI-2) in the US were collected, and sub-criticality evaluation technology, drying technology and technology to deal with hydrogen gas were studied during a visit to US Idaho National Laboratory (INL) where fuel debris from TMI-2 are stored.

Future Developments
In order to solve issues which may become problems in developing the basic design of storage canisters, various analyses, evaluations and element tests will be performed. Achievements in other projects will be reflected to fuel debris collection/transfer/storage scenarios and storage canister design.
Development of Technology for Evaluating the Integrity of the Reactor Pressure Vessel/Primary Containment Vessel

Background
The deterioration of the RPV and PCV structural materials at the Fukushima Daiichi NPS resulting from the high temperatures, injection of seawater and falling debris that occurred due to the severe nature of the Great East Japan Earthquake is a cause for concern. In the period leading up to the retrieval of fuel debris from the reactor core, a plan for maintaining the structural integrity of the PCV/RPV over the long term is required.

Aims
Based on seismic evaluations that take the impact of age-related deterioration due to corrosion and fallen fuel debris into consideration, an evaluation of the structural integrity of the PCV/RPV will be made. Corrosion control measures will be studied considering methods of fuel debris retrieval and PCV repair/water leak prevention from a seismic intensity perspective and used in maintaining the structural integrity of the PCV/RPV.

Main Achievements
1. Evaluation of submersion method feasibility based on the seismic integrity of the PCV/RPV
 A seismic response analysis model was developed for reactor building and large-sized equipment interaction that took both in air (current water level) and complete submersion methods of fuel debris retrieval into consideration under the plant conditions reflecting latest plans such as repairs (Table 1). Utilizing this model, the seismic load (shear and moment) of the PCV/RPV regions is calculated and, assessment of fatigue strength at each region will take place and the feasibility of the submersion method etc., examined.

2. Simple evaluation of equipment seismic resistance considering repairs (water leakage stoppage) and water level rise in the PCV
 Based on the conditions of reactor buildings and PCV/RPV following the accident and on the methods of building repair and fuel debris retrieval, the necessity of changes to the seismic response analysis model or to weight was examined, and relationships between plant conditions and seismic response analysis parameters was compiled. In future, calculation of seismic load variation coefficients and consideration of methods to combine these will be made, and development of a simple method of evaluation will continue.

3. Development of anti-corrosion measures
 In addition to rust-preventive agents (sodium tungstate, sodium pentaborate, etc.) identified previously, phosphates (phosphate mixed with zinc, sodium molybdate/sodium zinc oxide mixed phosphate) and sodium metavanadate were also selected as candidates, and validation tests, including those to evaluate rust inhibiting effects under high levels of radiation exposure, commenced (Table 2). After selection of an effective rust-preventive agent, an evaluation as to whether there are any secondary effects, such as adverse radionuclide effects or negative effects on the function of water treatment equipment, will be carried out.

4. Advancement of predictability of long-term corrosion thinning amount
 A long-term corrosion test (target of 10,000 hours) was initiated in order to build a corrosion thinning amount prediction model (Figure 1). Based on the data obtained from this test, a corrosion thinning amount prediction model equation will be constructed and the corrosion thinning amount in the PCV/RPV up to the time of fuel debris retrieval will be calculated. These findings will be reflected in seismic strength evaluation.

5. Evaluation of pedestal erosion impact
 Testing samples were manufactured in order to conduct concrete and rebar basic materials tests under high temperature heating/underwater exposure conditions, simulated block tests with the same thickness as found in actual RPV pedestals, and the tolerance tests with the small-scaled mock up. Tests and analyses will be performed following the RPV pedestal examination flow (Figure 2), and the integrity of RPV pedestals will be evaluated.

Future Developments
In addition to accelerate development of corrosion prevention measures, simple methods of evaluating seismic strength developed as part of this project will continue to be leveraged. Furthermore, the examination of an evaluation model equivalent to the method to retrieve fuel debris in air from the side and the effects of boric acid injection on the long-term integrity of equipment will be properly evaluated.

Table 1 Seismic response analysis cases and conditions:

<table>
<thead>
<tr>
<th>Plant/Case</th>
<th>1F-1</th>
<th>1F-2</th>
<th>1F-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H26-1</td>
<td>(in air (current water level))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Full submersion)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rust inhibitor</th>
<th>Sodium tungstate</th>
<th>Sodium molybdate</th>
<th>Sodium pentaborate</th>
<th>sodium nitrite</th>
<th>zinc phosphate mix</th>
<th>Zinc/molybdenum and mixed phosphate</th>
<th>Sodium metavanadate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rust inhibition confirmation test results</td>
<td>Completed in FY2013</td>
<td>Completed in FY2013</td>
<td>Completed in FY2013</td>
<td>Completed in FY2013</td>
<td>Due to be completed in FY2014-15</td>
<td>Due to be completed in FY2014-15</td>
<td>Due to be completed in FY2014-15</td>
</tr>
<tr>
<td>Anticorrosion coating type</td>
<td>Oxide film type</td>
<td>Oxide film type</td>
<td>Oxide film type</td>
<td>Oxide film type</td>
<td>Precipitation film type</td>
<td>Oxide film type</td>
<td>Oxide film type</td>
</tr>
<tr>
<td>Input required for anticorrosion effect</td>
<td>Medium</td>
<td>Large</td>
<td>Large</td>
<td>Small</td>
<td>Small</td>
<td>Medium</td>
<td>Being confirmed</td>
</tr>
</tbody>
</table>

Figure 1 Testing with corrosion testing
Figure 2 RPV investigation workflow
Development of Technology for Criticality Control in Fuel Debris Retrieval

Background

It is assumed that fuel debris is not currently in a critical state. However, as it is posited that changes in the shape of fuel debris or in water level may occur during the process of fuel debris retrieval in future, the development of criticality scenarios, criticality evaluation, monitoring technology, and technology to prevent criticality to prepare for such a situation is required.

Main Achievements

1. Evaluation of criticality

The most recent findings regarding conditions inside the reactor were reflected in criticality scenarios for each process between PCV submersion and the retrieval of fuel debris. Additionally, evaluation of criticality of fuel debris attached to CRD piping was added, and the risk of criticality for each part, such as fuel debris at the RPV lower head and the effect of submerging fuel remaining in the reactor core, was evaluated.

After an examination of criticality controls at the time of PCV submersion based on this evaluation, it was confirmed that in criticality prevention where sodium pentaborate is used as a soluble neutron absorption material, the required boron concentration was approximately 12,000 ppm. However, when the highly enriched 195Au in fuel debris is set at approximately 4.0 wt.%, higher than the average value in the fuel assemblies, and in light of fuel combustion efficiency and the effectiveness of neutron absorption material such as gadolinia, the required concentration is expected to decrease.

Additionally, even in the event that criticality occurs, if the speed of water submergence is closely monitored, it can be expected that the total fission number can be suppressed to stay within the target range (Figure 1).

2. Technology for reactor re-criticality detection

The applicability of gas sampling fission product gamma radiation detector systems to actual reactors to detect re-criticality was confirmed. Specifically, a sub-criticality estimation algorithm that uses the differences in the yield of fission product nuclides produced in nuclear fission was evaluated.

Furthermore, detectors were placed in the vicinity of fuel debris retrieval positions and development commenced of an in-core criticality approach detection system to detect abnormalities before criticality is reached. In addition to extracting candidate criticality approach detection methods and making evaluations (Table 1), a study of test methods for system verification was conducted.

3. Technology for criticality prevention

Development of non-soluble neutron absorbing material is currently in progress. This technology prevents criticality when it is possible to access the fuel debris by supporting soluble neutron absorbing material through the direct application on debris. Irradiation tests that compared materials to candidate materials chosen in the previous fiscal year were executed, and candidates were selected based on elution characteristic radiation-resistance performance (Figure 2). In addition, an applicability evaluation of the fundamental physical properties of newly-devised candidate materials (underwater curing epoxy/Gd$_2$O$_3$) was carried out, and the required functions of non-soluble neutron absorbing material and input pathway for its application, etc., were examined.

Soluble neutron absorption material will be widely used to prevent criticality between PCV submersion and the retrieval of fuel debris. In order to confirm the effect the application of this material will have on the integrity of RPV/PCV, corrosion testing using a boric acid + pH adjuster and sodium pentaborate was performed. Results showed that significant corrosion was not observed with the concentration required for the suppression of criticality (Figure 3) and applicability for the prevention of criticality during PCV submersion was confirmed together with the results of a rough evaluation of insertion equipment.

Future Developments

In regard to criticality controls for the PCV submersion process examined during this year, in addition to achieving refinement by reflecting the latest findings (on debris location and so forth), further development of criticality control methods will take place while multiple methods of fuel debris retrieval involving extraction in air and in water are considered. The feasibility of the in-core criticality approach detector system applicable to this process will be confirmed through the performance of verification tests. Furthermore, collection and selection of candidate non-soluble neutron absorbing materials based on confirmation of nuclear characteristics will take place and methods of material application will be examined. The plan is to utilize these technologies in the process of selecting safe and efficient methods of fuel retrieval.

Figure 1 Evaluation of total fission number on the assumption of a criticality accident occurring during the time of PCV submersion

Using calculations that simulate behavior in the period between when criticality is reached and when it is detected and criticality suppression commences, the total fission number that affects exposure level is evaluated. Frequency distribution was sought with unknown conditions set as parameters. By limiting submergence speed (blue in purple distribution), the total fission number can be kept under 10^5 times, a figure that keeps the exposure level under an allowable range.

Figure 2 Non-soluble neutron absorption material dissolution test result

Candidate materials that were chosen based on confirmation of basic physical properties in the previous year were singled out by confirming their characteristics under irradiation. Suitable passivation film was formed and tested confirmed the significant corrosion was observed. Likewise, corrosion did not occur even when conditions were changed, such as testing in the presence or absence of boric acid + pH adjuster or of rust inhibitors.

Figure 3 Soluble neutron absorption material corrosion test result

Image shows results of 500-hour test on sodium pentaborate of 15,000 ppm for non-coated base material. Suitable passivation film was formed and rust confirmed to have significant corrosion was observed. Suitable passivation film was formed and rust confirmed to have significant corrosion was observed.
Development of Technology for Fuel Debris Characterization and Treatment

Background
In order to develop, design and manufacture equipment, tools and containers for the retrieval and storage of fuel debris, the underlying data that is comprised of fuel debris mechanical properties, such as hardness, thermal properties, chemical stability or moisture characteristics must be fully understood.

Aims
In order to examine fuel debris retrieval methods or obtain share the data or information required for examination in other projects such as that related to development of equipment or devices for retrieval and technology for collection, transfer and storage of fuel debris, testing and analysis using simulated debris will be conducted and estimates made of fuel debris characteristics.

Main Achievements
1. Analysis of the characteristics using simulated debris
 a. Understanding debris characteristics data
 (U,ZrO)
 In regard to the mechanical properties of fuel debris particular to the Fukushima Daiichi NPS, in addition to evaluating simulated 'VUVSF%FWFMPQNFOUT' for estimation of hydrogen generation by water radiolysis (problematic from a safety perspective), testing using porous ceramics was plan based on future technology development needs was formulated. Additionally, in regard to hydrous/drying property data required While sharing information with other projects related to the collection, transfer and storage of fuel debris, a research and development tools and containers for the retrieval and storage of fuel debris, the underlying data that is comprised of fuel debris mechanical properties, such as hardness, thermal properties, chemical stability or moisture characteristics were performed, clarifying the impact each property had on boring performance.
 U-Zr-O phase relations under conditions where hyper oxides in U-Zr-O-based oxides occur were investigated experimentally, and data was expanded in order to predict the chemical form of U. Using two kinds of melting methods - arc melting and focused radiation melting (Figure 1) - basic data related to reactions with concrete was obtained. Properties data on fine debris generated after immersion in cooling water for an extended period was acquired. In addition, solidified oxide melt debris were produced and b. Comparison with TMI-2 debris
 In order to evaluate the characteristics of fuel debris from the Three Mile Island Unit 2 (TMI-2) accident and compare and examine it against data obtained in the step ‘Understanding debris characteristics data’ above, sample processing and ceramography were conducted (Figure 4) and Vickers hardness measured using three different samples of TMI-2 debris held by the Japan Atomic Energy Agency (JAEA). In addition, in order to establish specific properties analysis techniques using actual debris samples, an alkali fusion technique was applied and analyzed. Assuming that existing facilities can be effectively utilized for further actual debris sample analysis in future, a transport study using TMI-2 debris as an example was conducted.

2. Development of debris treatment technology
 While sharing information with other projects related to the collection, transfer and storage of fuel debris, a research and development plan based on future technology development needs was formulated. Additionally, in regard to hydrous drying property data required for estimation of hydrogen generation by water radiolysis (problematic from a safety perspective), testing using porous ceramics was undertaken and factors that affect drying properties set out. Further to this, simulated MOX fuel debris consisting of UO2, ZrO2 and PuO2 was manufactured, and redox behavior and properties changes in redox process experimentally were investigated.

Future Developments
In regard to the mechanical properties of fuel debris particular to the Fukushima Daiichi NPS, in addition to evaluating simulated debris, we will continue international cooperative efforts with France’s CEA to evaluate the characteristics of MCCO products and cooperate with Kazakhstan’s NNC to produce solidified products containing UO2, and compile data related to fuel debris characteristics by the end of FY2015.

In the development of treatment technologies, based on a plan formulated in FY2014, evaluation of hydrous/drying properties and so on required for the development of retrieval and storage technology will be performed.
Development of Technology for Analysis of Debris Properties

Background
Determining the properties of debris is crucial to understanding the situation inside the reactor core, stability management, and ensuring that retrieval and storage operations proceed safely and steadily. In order to provide useful information without delays, analysis-related technologies, including pre-analysis processing and wastewater treatment technologies, must be established in advance so as to handle a wide variety of material properties.

Aims
The final goal of this project is to analyze Fukushima debris and determine their physical properties in order to deploy and obtain the obtained information in other projects. For that purpose, preparation is to be made in an examination of the overall analysis workflow, the formulation of an analysis and measurement technology development plan, and development of individual analysis and measurement technologies.

Main Achievements

1. Establishment of development plan for fuel debris analysis and measurement technology
Analysis items and the overall workflow of debris analysis were examined in line with the needs of other projects and technical challenges were identified. Items that include basic analysis such as observation of debris shape, element/nuclei quantification analysis for composition evaluation, and mechanical/thermal property measurements have been selected (Figure 1). The establishment of procedures for dissolving debris, the influence of flux components in quantitative analysis, and the actualization of test measurement methods have been identified as the main technical challenges. These potential challenges were collated and future development plans have been formulated.

2. Development of analysis and measurement technology
a. Development of dissolution technique using fusion method, etc.
A fusion method used as a pre-analysis processing method is being examined for the purpose of elemental analysis of fuel debris samples. In addition to Z-cladding and reactor core internal structural materials being mixed together, it is thought that MCCI products, debris reacted at high temperatures with concrete, exist and are extremely insoluble. In response to this, it was confirmed that by using sodium peroxide, simulated debris could be completely dissolved in nitric acid through the “alkaline fusion method,” known as a method for the dissolution of low solubility samples (Figure 2).

b. Study on chemical state analysis method
To investigate the composition of solid debris (including chemical state), simulated solid products from assumed components were produced and a quantitative analysis using SEM/WDX solid state analysis methods was studied. The quantitative analysis method involved the measurement of composition ratio using SEM/WDX reflection electron imaging and using spot analysis and so on as a method of identifying chemical states (Figure 3). In testing of simulated U+UO2 solidified product, almost identical results were seen in quantitative results yielded from powder X-ray diffraction (Rietveld analysis).

c. Maintenance of debris analysis equipment
High-dose rate debris is required to be handled within a cell. For the purpose of analysis of debris, analysis equipment (SEM/WDX/WDX) and the cell to contain them were configured, and cell specifications and the required modification of equipment were examined. From a safety and operability standpoint, all of the equipment is required to be placed within the cell, which was required to be 2.3 m × 2.3 m × 2.3 m in size as a result. In regard to the modification of the equipment, locations that required modification and steps involved were clarified in terms of operability, reduction of the impact of debris radiation, and maintenance (Figure 4).

3. Study on properties analysis for the proper treatment and disposal of debris
The fuel debris produced at the Fukushima Daiichi NPS is of a type that contains internal structural components. If the appropriate analysis and classification can be employed at the time the debris is retrieved, the subsequent storage process and selection of storage location can be streamlined. Classification of debris was therefore examined in terms of nuclear material management, ‘streamlining of storage’ and ‘safety at time of disposal’. In addition, a proposed sorting method for the measurement of nuclear material (Figure 5) was examined, and the sorting performance (lower detection limit) of devices using the active neutron method was analytically studied.

Future Developments
The technically-challenging fuel debris dissolusion procedures will be established and technology to deal with flux components in quantitative analysis will be developed. These outputs will be reflected in the development of the overall workflow for fuel debris analysis. Working closely with other projects, in addition to further clarifying required physical property values and content, test and quantitative evaluation methods that can produce appropriate property values will be examined. Furthermore, in preparation for early analysis, containers for transportation of fuel debris for analysis will also be studied.
Main R&D Achievements

Key Issue 3: R&D for Treatment and Disposal of Radioactive Waste

Development of Technology for Treatment and Disposal of Accident-generated Waste

Background

Waste generated through the accident at the Fukushima Daiichi NPS contains radionuclides derived from fuel, may contain seawater components, is highly radioactive, wide-ranging in contamination level, and high in volume, making it different from radioactive waste generated at typical nuclear power plants.

Aims

Through characterization by inventory assessment based on waste product analysis and analytical techniques, the study of long-term storage strategies for stable management up to processing and disposal, investigations and basic tests related to technologies for processing and packaging waste, and research into and organization of existing disposal concepts and safety assessment techniques, technologies for the safe treatment of accident-generated waste and for its disposal will be developed.

Main Achievements

1. Characterization of accident-generated waste

Radioactivity level readings are being sought through the analysis of a variety of accident-generated waste. Contaminated water, plants and rubble (Figure 1) have been analyzed and in regard to the analysis of standing trees, H (tritium) and 14C have been detected along with 137Cs and 95Sr, revealing the distribution of radioactivity at the power station site. At the same time, development of analytical techniques intended for nuclides difficult to analyze at low concentrations, collation of data of the characteristics of secondary waste stemming from treatment of contaminated water (ozoite for Cs absorption, etc.), and evaluation of radioactivity levels (inventory) for waste currently difficult to analyze were executed.

2. Study on long-term storage method of accident-generated waste

In regard to the long-term storage of cesium absorption vessels used to separate and recover cesium from contaminated water, a simulation test using a 1/4 scale mock-up was used to determine conditions inside the vessels (Figure 3). Observations showed that insoluble components containing chlorine are transferred to the part that generates heat by absorbing Cs. Based on this knowledge, estimations were made by calculating temporal changes inside the vessels. Additionally, experiments also sought to determine absorption vessels material corrosion conditions.

Slurry dehydro/drying tests were conducted in order to stabilize iron hydroxide and carbonate slurry generated by the Advanced Liquid Processing System (ALPS). In addition, the amount of hydrogen gas expelled by stable products due to exposure to radiation was also evaluated.

3. Study on treatment of accident-generated waste

Basic testing and the creation of a technical catalog were conducted in the initial selection of candidate treatment and conditioning techniques. Targeting the slurry generated by the ALPS and waste absorbents, solidification tests were performed by using various types of solid-type materials and the curing process and waste characteristics were explored. Additionally, resin-based absorbent volume reduction testing and radioactive material gas phase migration experiments using high-temperature processing were conducted. In addition to making a technical catalog that includes a waste treatment, conditioning technique technical outline, applicable waste, process workflow, processing capacity, and technology readiness (Figure 4), organization of technical requirements commenced in the process of narrowing down initial candidate technologies.

4. Study on disposal of accident-generated waste

Based on the results of surveys on existing disposal concepts and safety assessment techniques (scenarios, models, and parameters), basic concepts and characteristics were arranged. In addition, safety evaluation method was developed provisionally considering characteristics of accident-generated waste assuming that existing disposal concepts would be applied to accident-generated waste. Furthermore, analysis cases for assumed scenarios were created, and in addition to estimating the safety of each waste product, sensitivity analysis to determine parameter variation was implemented and information that contributes to the investigation of disposal classification and relates to important nuclides that affect disposal safety were extracted.

5. Study on prerequisites for R&D

In addition to classifying accident-generated waste characteristics and contamination history, a series of examples (waste management stream) looking at how storage, processing and disposal processes are to be handled was drawn up (Figure 5). Information items (waste amount, radioactive concentration, storage conditions, etc.) were also organized together with this action. Related water analysis result data was published in the FY2013 edition of the Database on Analyses of Contaminated Water (IAEA-Data/Code 2014-016). Additionally, the relationship between main work items and information items in the development of processing and disposal technologies was organized as a step towards the development of tools designed for information management.

Future Developments

In addition to continuing to analyze accident-generated waste characteristics, inventory assessment using analytical techniques will be studied. In regard to the study of long-term storage strategies, engineering tests related to the stabilization of slurry generated by the ALPS will be conducted to evaluate the entire system. Data related to the processing and packaging of wastes will continue to be obtained in the study of processing techniques. Meanwhile in the study of waste disposal, existing evaluation methods will be reviewed and classification evaluation and indication of challenges regarding accident-generated waste will be undertaken. Finally, in the examination of prerequisites for R&D, organization of waste management stream candidates and information on accident-generated waste will be ongoing.

Figure 1: Relationship in concentration of 95Sr and 137Cs detected in rubble and plants (felled and standing trees) taken inside and outside reactor buildings.

Figure 3: Simulated tests to determine conditions inside cesium absorption apparatus.

Figure 4: Example of technical catalog.

Figure 5: Example of series of handling procedures for storage, processing and disposal of waste.

34

IRID Annual Report 2014 35
Analysis of Contaminated Objects Sampled from Reactor Buildings

Background
In order to develop remote decontamination devices, obtaining detailed data on contamination conditions inside the Unit 1-3 reactor buildings is essential. An understanding of the contamination situation and acquisition of basic data through analysis of contaminated samples from each reactor building is therefore required.

Aims
Contaminated samples taken from high dose rate areas in reactor buildings (Units 1-2) will be analyzed to understand in detail the type of radioactive materials present and their distribution (particularly their permeation into concrete walls exposed to a steam environment). Steps will be taken to expand basic data that will contribute to the development of remotely controlled decontamination equipment and the formulation of a decontamination plan.

Main Achievements
1. Analysis of contaminated samples taken from the operation floor of Unit 2
In a sample taken from the central part of the well plug, the surface of the curing sheet covering the floor showed fixed contamination of 1.0×10^4 Bq/cm2 and fixed contamination of 1.4×10^5 Bq/cm2 was also found on the epoxy coating surface. While there were some signs of degradation of the thin epoxy coating, contaminants were found to have not permeated into the epoxy coating and concrete, and it was confirmed that the epoxy coating suppressed the penetration of the contaminants into the concrete (Figure 1). Fixed contamination of 1.0×10^4 Bq/cm2 was found on the thinly-layered surface coating on the ceiling of the upper part of the well plug (deck plate), and by organizing cut test pieces and performing simple decontamination tests, the effectiveness of decontamination techniques were confirmed.

2. Analysis of contaminated samples taken at the southern side of the first floor of Unit 1
In a sample taken from the area in between the X-6 penetration and piping, fixed contamination on the surface of the epoxy coating covering the floor was found to be 1.4×10^5 Bq/cm2, but was not found to have permeated and caused internal contamination. Samples taken from the vicinity of water stains at the AC pipe base showed fixed contamination on the surface of the epoxy coating covering the floor at 2.7×10^5 Bq/cm2. While permeation into the coating was not found, in places where cracks had formed in the coating, penetrating contamination in the lower concrete layer was observed to be around 1.7×10^5 Bq/cm2. It was assumed to be caused by moisture included 137Cs that had passed through the cracks in the epoxy coating and had permeated into the concrete below.

Future Developments
Basic data obtained through this research on the contamination situation at each Unit will be used in the selection of decontamination technology for decontamination work at the south side on the first floor of Unit 1 and the operation floor at Unit 2, and will be used for such things as the improvement of remotely controlled decontamination equipment in other projects and will be reflected in decontamination plans.
Main Research Results Announced/Published in FY 2014

<table>
<thead>
<tr>
<th>No.</th>
<th>Publisher</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Preparation and characterization of simulated MCCJ products (Phases and microhardness of molten solidified samples prepared by arc melting)</td>
</tr>
<tr>
<td>31</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Preparation and characterization of simulated MCCJ products (Characterization of interface between concrete and molten core)</td>
</tr>
<tr>
<td>32</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Study on dissolution technique for damaged fuel in the Fukushima Daiichi NPS (Dissolution test of fuel debris sample from TR-2)</td>
</tr>
<tr>
<td>33</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Impact evaluation of seawater on corrosion of materials used in reprocessing process</td>
</tr>
<tr>
<td>34</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Development of technology for remotely operated decontamination inside reactor buildings (Analysis of concrete core sample from south side of the first floor in Unit 1)</td>
</tr>
<tr>
<td>35</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Radiocchemical analysis of trees collected from the Fukushima Daiichi NPS</td>
</tr>
<tr>
<td>36</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Development of inventory evaluation methods for the radioactive wastes of the Fukushima Daiichi NPS</td>
</tr>
<tr>
<td>37</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Study on long-term storage method of spent radioactive absorption vessel</td>
</tr>
<tr>
<td>38</td>
<td>Atomic Energy Society of Japan</td>
<td>March 20, 2015</td>
<td>Current status of secondary waste stemming from contaminated water treatment and efforts towards processing and disposal</td>
</tr>
</tbody>
</table>

Main R&D Installations/Equipment

<table>
<thead>
<tr>
<th>No.</th>
<th>Project Name</th>
<th>Remarks Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evaluation of long-term structural integrity of the fuel assembly removed from the spent fuel pool</td>
<td>Ultrapure water making apparatus</td>
</tr>
<tr>
<td>2</td>
<td>Evaluation of long-term structural integrity of the fuel assembly removed from the spent fuel pool</td>
<td>Multi-water quality meter</td>
</tr>
<tr>
<td>3</td>
<td>Evaluation of long-term structural integrity of the fuel assembly removed from the spent fuel pool</td>
<td>Automatic titrator</td>
</tr>
<tr>
<td>4</td>
<td>Study of methods to process damaged fuel removed from the spent fuel pool</td>
<td>Spectrophotometer</td>
</tr>
<tr>
<td>5</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Pressure reduction type immersion corrosion test equipment</td>
</tr>
<tr>
<td>6</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Investigation equipment for spent fuel interior</td>
</tr>
<tr>
<td>7</td>
<td>Development of technology for investigation inside the PCV</td>
<td>X-ray penetration hole boring equipment</td>
</tr>
<tr>
<td>8</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Penetration cable removal equipment</td>
</tr>
<tr>
<td>9</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Sediment removal device</td>
</tr>
<tr>
<td>10</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Pre-confirmation Equipment for spent fuel interior</td>
</tr>
<tr>
<td>11</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Mock-up of PCV intervals</td>
</tr>
<tr>
<td>12</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Shield block removal equipment</td>
</tr>
<tr>
<td>13</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Shape-changing device for investigating spent fuel exterior</td>
</tr>
<tr>
<td>14</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Scattering prevention device for in situ inspection</td>
</tr>
<tr>
<td>15</td>
<td>Development of technology for investigation inside the PCV</td>
<td>Equipment for measurement of fuel debris shape</td>
</tr>
<tr>
<td>16</td>
<td>Development of technology for detection of fuel debris in the reactor</td>
<td>Small-scale m/s tracking system using scattering method</td>
</tr>
<tr>
<td>17</td>
<td>Development of technology for detection of fuel debris in the reactor</td>
<td>Muon tracking system using scattering method for 1F</td>
</tr>
<tr>
<td>18</td>
<td>Development of technology for retrieval of fuel debris and reactor internals</td>
<td>Equipment for evaluating sheet to prevent spread of contamination</td>
</tr>
<tr>
<td>19</td>
<td>Development of technology for retrieval of fuel debris and reactor internals</td>
<td>Remotely operated arm (artificial muscle robot)</td>
</tr>
<tr>
<td>20</td>
<td>Development of technology for retrieval of fuel debris and reactor internals</td>
<td>Ceramography image processing equipment</td>
</tr>
<tr>
<td>21</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>Carbon coater</td>
</tr>
<tr>
<td>22</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>Fuel debris sonic speed measuring device</td>
</tr>
<tr>
<td>23</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>Fuel debris pressure test equipment</td>
</tr>
<tr>
<td>24</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>High capacity thermobalance and simultaneous heat analysis equipment</td>
</tr>
<tr>
<td>25</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>Crystal piezoelectric four-component dynamometer</td>
</tr>
<tr>
<td>26</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>SEM elemental analysis system</td>
</tr>
<tr>
<td>27</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>Hydraulics auto mounting machine</td>
</tr>
<tr>
<td>28</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>Inverted metallurgical microscope</td>
</tr>
<tr>
<td>29</td>
<td>Development of technology for fuel debris characterization and treatment</td>
<td>Vacuum arc melting furnace</td>
</tr>
<tr>
<td>30</td>
<td>Development of technology for analysis of debris properties</td>
<td>Ball mill</td>
</tr>
<tr>
<td>31</td>
<td>Development of technology for analysis of debris properties</td>
<td>Small thermostatic dryer</td>
</tr>
<tr>
<td>32</td>
<td>Development of technology for analysis of debris properties</td>
<td>Measurement control system for waste sorting measurement equipment</td>
</tr>
<tr>
<td>33</td>
<td>Development of technology for analysis of debris properties</td>
<td>Small scale filter press</td>
</tr>
<tr>
<td>34</td>
<td>Development of technology for treatment and disposal of accident-generated waste</td>
<td>Full scale filter press</td>
</tr>
<tr>
<td>35</td>
<td>Development of technology for treatment and disposal of accident-generated waste</td>
<td>Small scale filter press</td>
</tr>
<tr>
<td>36</td>
<td>Development of technology for treatment and disposal of accident-generated waste</td>
<td>Slurry conditioning tank equipment</td>
</tr>
<tr>
<td>37</td>
<td>Development of technology for treatment and disposal of accident-generated waste</td>
<td>Particle size analyzer</td>
</tr>
<tr>
<td>38</td>
<td>Development of technology for treatment and disposal of accident-generated waste</td>
<td>Atomic absorption spectrophotometer</td>
</tr>
<tr>
<td>39</td>
<td>Development of technology for treatment and disposal of accident-generated waste</td>
<td>Water purification system</td>
</tr>
<tr>
<td>No.</td>
<td>Project Name</td>
<td>Type</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>Development of Technology for Investigation Inside the RPV</td>
<td>Contract research</td>
</tr>
<tr>
<td>2</td>
<td>Development of Technology for Investigation Inside the RPV</td>
<td>Contract research</td>
</tr>
<tr>
<td>4</td>
<td>Development of Technology for Fuel Debris Characterization and Treatment</td>
<td>Contract research</td>
</tr>
<tr>
<td>9</td>
<td>Development of Technology for Remotely Operated Decontamination Inside Reactor Buildings</td>
<td>Contract research</td>
</tr>
<tr>
<td>11</td>
<td>Development of Technology for Remotely Operated Decontamination Inside Reactor Buildings</td>
<td>Contract research</td>
</tr>
</tbody>
</table>