-		to be disclosed t					
			Technology Inform	nation			
Area		Treatment of contaminated water (Tritium, etc.)					
Title		Fibrous radionuclide's sorbents FIBAN K-1 and FIBAN K-1-1					
Submitted by		Institute of Physical Organic Chemistry of NAS of Belarus (IPOC)					
1. Overvie	w of	Technologies (f	eatures, specification,	functions,	owners, et	c.)	
Trademark				Optimal	Optimal	pН	Maximum
of the fiber F		unctional groups	Туре	exchange	swelling,	working	temperature,
				capacity,	g H₂O	range	°C
				meq/g *	g ion		
					exchanger		
FIBAN K-1	-SC	D₃⁻H⁺	monofunctional	3.0	1.0	0 – 14	100 (H ⁺)
			strong-acid				
FIBAN	-SC	D ₃ ⁻ (K ⁺ , Co ²⁺)	strong-acid, modified	3.0	0.7	0 – 11	100
K-1-1	K _x C	Co _y [Fe(CN) ₆]	by potassium-cobalt	10			
			ferrocyanide	mass.%			

[Form 2 (to be reported to Committee on Countermeasures for Contaminated Water Treatment and to be disclosed to public)

Fibrous sulfonic acid cation exchanger FIBAN K-1 for concentration of heavy metals and radionuclides (e.g. strontium) is polypropylene fiber with graft copolymer of styrene and divinylbenzene, EC = 3 meq/g.

The sorbent exists in two textile forms: staple fiber, nonwoven needle-punched material with surface density $300-500 \text{ g/m}^2$.

Fibrous cation exchanger FIBAN K-1-1 - radiocesium-137 sorbent based on fibrous sulfonic acid cation exchanger FIBAN K-1.

Fibrous radiocesium-137 sorbent FIBAN K-1-1.

Static tests showed that the sorbent is capable to remove 90-95% of the ionic form of radiocesium selectively from the following media: tap water, 0.1 M nitric acid (HNO3), solution containing up to 200 g/L of sodium chloride, water solutions containing surfactants. The distribution coefficients in these media were about 103 ml/g.

In dynamic experiments it was found that 50 g of the sorbent in the form of staple fiber, placed into a 250 cm³ separatory funnel , are capable to purify 400 column volumes (100dm³) of water

containing cesium and strontium radionuclides. Extraction factor for cesium is about 95% and for strontium - about 90%.

The sorbent exists in two textile forms: 1) staple fiber 2) Non-woven needle-punched material with surface density 500-850 g/m² and the content of the FIBAN K-1-1 about 60 wt %.

Developer and manufacturer - Institute of Physical Organic Chemistry of NAS of Belarus.

- 2. Notes (Please provide following information if possible.)
- Technology readiness level (including cases of application, not limited to nuclear industry, time line for application)

In the IPOC a process procedure for sorbents production is developed and a pilot production line operates with an annual output of 3 tons.

FIBAN K-1 may be applied in industrial filters for the deep air purification from ammonia, amines, nitrogen-containing heterocycles, aerosols of alkalis (including in clean rooms in the electronic and pharmaceutical industries). Water softening and purification from heavy metal ions.

- Challenges

Studies of radionuclides sorption in liquids were performed only in laboratory line.

- Others (referential information on patent if any)

[Areas of Technologies Requested]

- (1) Accumulation of contaminated water (Storage Tanks, etc.)
- (2) Treatment of contaminated water (Tritium, etc.)
- (3) Removal of radioactive materials from the seawater in the harbor
- (4) Management of contaminated water inside the buildings
- (5) Management measures to block groundwater from flowing into the site
- (6) Understanding the groundwater flow