添付資料1 分野別の主な技術提案の総括 [技術分野1: 汚染水貯留]

特にご提案をお	S願いしたい技術		_	·提案		
 項目	小項目		番号	関連するキーワード	ご提案いただいた技術の傾向	専門家レビュー会議によるコメント
7,1	部品納入&現地施工期間が現状と比較して短期間であるこ		558, 586, 620	工場製作一括設置大型タンク	溶接型タンクに求める要求事項として、 ・部品納入&現地施工期間が現状と比較して短期間であること ・タンク内面から点検&補修せずに10年以上漏えいを防止できること ・効率的に貯留できる構造であること ・少なくとも0.36G以上の地震に対して漏えい防止機能を維持できること	・十分に検討された実現性が高い提案が多い。 ・二重鋼殻大型タンクは挙げられたすべての技術スペックを直ちに満たせる提案と考えられる。
	タンク内面からの点検& 補修せずに 10年以上漏 えいを防止 できること	ライニング	36 86, 100, 286, 771	チタンシート エポキシ	が挙げられている。 これらをすべて満たすものとして、二重鋼殻の大型鋼製タンクの工場製作および現地一括設置が提案されている。 また、個々の要求事項に対しての提案も多数寄せられており、これらの組み合わせによる課題解決についても検討の余地がある。 納期工期の短縮については、工場製作+現地一括設置し、かつ設計から据付までのサプライチェーンを確保することで納工期短縮を実現する鋼製タンクの提案があった。 タンク内面から点検&補修せずに10年以上漏えいを防止できることについては、鋼製タンクの内面をエポキシ、ポリエチレンまたはゴム等の樹脂でライニングする提案が多数あった。また、コンクリートニ次製品にチタン等のライナーを施して耐久性を得る方法も提案された。電気防食による腐食対策も提案されている。さらに、タンクの維持管理方法に関する提案、タンクに接続する配管からの漏えいを防止する方法も提案された。 対率的に貯留できる構造であることに関する提案ついては、現地で部材を組み立てる案、工場で製作する案に分けられる。現地組立では最大	
			94 136 152	低密度ポリエチレンライナー 様式2なし 塑性保護コーティング		・タンクの大型化は貯留効率を高める一方で、事故時のリスクを高めることに留意が必要であるが、現状の2倍程度の容量(2000t)であれば許容
			176, 216 206	繊維強化プラスチック(FRP) タンク内部へのシートまたは吹き付けによる漏え い防止		範囲と考えられる。大型タンクの設計・製作自体には大きな課題はないと 考えられる。 ・耐震性に関しては、タンクの連結部の柔軟性確保が指摘されている。今
			219 280 397	耐放射線コーティング、高性能繊維 ゴム袋によるライニング 耐放コーティング、遮へい材重ね吹き		後の地震などの災害リスクを考えると、いずれかの方法を選定して早期 に着手する課題と考える。
			433 664 373	タンク内に袋状構造物を配備する		ンスに供するといったことが行われている。今回対象とする汚染水タンク
		二重鋼殻タンク	102 219, 558, 620	二重構造のタンクの間隙に遮水遮へい材設置 二重鋼殻		原子力施設でも実施しており、精油施設や化学プラントにも関連するノウ ハウがあるはずである。
			400		30,000tの配水池、工場製作では2,000tの鋼製タンクが提案されている。	
(1)溶接型タ ンクに求める		タンクの補強 接続管からの漏えい防止	174 603, 665 687, 688		耐震性については、地震時の破壊を避けるためタンクの剛な連結を外 すべきとの意見が示された。タンク縦横の継ぎ手部に変形追随機能を持	
要求事項	有限の敷地内に効率的に対容であること(標準:円筒鋼製1000トンタンク)	タンクの大型化	58 147, 551 328 334 443 558	ステンレス鋼(SUS)製配水池1万~3万t製品 大口径鋼管のタンク化 現地組み立て9,000tタンク 1,000tタンク(SUSおよびグラスファイバー) 石油タンク 工場製作1,000tタンク 工場製作1,500tタンク	上せる方法が提案されている。また、タンクを免震化・制震化する方法も 提案されている。 制動X線遮へいについては、躯体や遮へい材の設置によりX線の遮へいを期待する案が多数示された。また、高分子材料により制動X線そのものを抑制することも示されている。	
	相当程度(少なくとも0.36 G)以上の地震に対し漏えい防止機能を維持できること		587 620 58, 72 152	現地組み立て5,000tタンク 工場製作2,000tタンク 機能性継ぎ手 塑性保護コーティング		
		タンク本体の免震・制震	620 174 361 692	ニ重鋼殻タンク タンクの免震化 スロッシング制御装置 粘弾性ダンパー		
		その他	28 669 36	タンク配管の剛連結解除 耐震設計 チタンシート		
	制動X線を抑制できる遮へ	制動X線の遮へい	219 549 586 620	二重鋼殻間に鉛を挿入 様式2なし 遮へい設計 二重鋼殻		
	い機能を有すること	制動X線の発生抑制 その他	274 698	プラスチックタンク、エポキシ樹脂 性能評価システム		

特にご提案をお	願いしたい技術		ī	"提案		**************************************
項目	小項目	分類	番号	関連するキーワード	- ご提案いただいた技術の傾向	専門家レビュー会議によるコメント
			13, 197, 273, 335, 395, 432, 457, 517	タンカー、メガフロート等	についての提案が多数あった。タンカーやメガフロートを用いたものが多く、中には石油の洋上備蓄の実績から、タンカー、コンテナ船、中継港での積み替え等様々な検討と提案もなされている。	・汚染水の洋上貯留は、漏えい時のリスクについて考慮する必要がある。国際的に見ても過去に実績がなく、技術面での信頼性と地元関係者の同意の点で難しいと考えらえる。この場合堤防に囲まれた湾内での浮
		洋上貯留	39	石油備蓄に基づく洋上備蓄の考察		き貯留は漏えいの観点から比較的可能性があるが、津波対策を考慮す
		Storage on the ocean	493	洋上貯留のコスト工期、地上タンクとの比較		ることが必要となる。洋上貯留の場合には、海水中の塩素による鋼材の
			503	鋼製ボックス		腐食が課題となる。
			555	メガフロートによる港湾内貯留	の方法、持門に無外門と改造して直接計画する方法の提案とれる。	・地下タンクは、工事が長期間になることを考慮する必要がある。また、
			421	フレキシブルタンク	ンカーを利用した地下タンクの提案も示された。	地下からの漏えい検知についても検討が必要である。
			550	ダブル提		 ・汚染水の貯留が現地における非常に重要な課題である状況を鑑みる
			668	防潮堤内の遮水、直接貯留	トレンチ形状の地下貯水槽も多数提案され、多くがベントナイトバリアと	と、既設の地下貯水槽を何らかの切り札として活かしておくことも策の一 つとして考えられる。本年4月に漏水事故が生じたものではあるが、一定
	大量の汚染		697	汚染水タンク、処理設備、処理水タンク、浮体	遮水シートを組み合せたものであった。	
	水を長期的		192	埋設配管の利用	┃ ┃ ★刑地 ト タン・ク トレ でけ、プレストレスト・コンクリートや石油タンクなど旺	の層厚を有した粘土ライナーによる底部遮水層を設ければ遮水性能は 格段に向上し、タンクに将来何らかの不具合が生じたときのフェールセー
	安定的に貯蔵することの	地下タンクと地下貯留	367 557	地下深層部の利用	大型地上ダンクとしては、プレストレスト・コンクリートや石油ダンクなと既 往の経験に基づく提案がなされた。また、コンクリートタンクへの新材料の	
(と) てのガッタ	ー・エフエンナ		574	石油タンカーを流用した埋め込みタンク 50万t地下タンクの高速施工	世案があった。	
ンクに求める 要求事項	(タンク以外	トレンチ形状の地下貯水 槽全般	103, 382, 478, 554, 647, 666, 667, 702	構造と材料の改良、総論的アドバイス、活用方	」 小型タンクを多数用いる方法、集積する方法なども提案された。	・大量の汚染水は蒸散により減容することも考えられる。その場合、トリチウムなどの放射性核種の放出と核種および塩類の濃縮に注意を払う必要がある。
			36, 71, 146, 360,	コンクリートタンク	また地盤沈下対応として、地盤改良により沈下を防止する方法、変形可	
			565, 691, 699 217	大口径超長尺ホースへの貯留	_ るアイディアなどが提案された。 ─ 土木学会および地盤工学会からは地下貯水槽の改良や貯水タンク基 ─ 礎工の改良など、溶接型タンクに求める要求事項も含め、多数の有益な _ ご提案をいただいた。	・今回の技術提案には海洋貯留、大型地上タンク、大型地下タンク、地下 貯槽などいずれも既往の大型プロジェクトで一定の実績のある方法での
		溶接以外の地上タンク(コンクリートタンクなど)	454	アラミド繊維、補強		技案がなされた。今後、これらの活用の可能性を検討していくにあたって
			619	現地組み立て		は、サイトの条件や優先度、時間的制約等様々なリスクを考慮の上、課
			663	漏えいバックアップ		
			54, 106	プラスチックタンク		期せぬ汚染水の増大に備えてのオプションを考えておくことも重要である。
		小型タンクの活用	223	小型タンクの立体積み重ね定置		・地盤沈下に関しては、正確な地盤情報に基づく設計が重要と考えらえられる。
			257, 371, 719	フレキシブルバッグ		
			502, 651	飲料缶技術		れる。
	地盤沈下に		58	機能性継ぎ手		
	も対応できる 手法		578	グラウトによる地盤改良工法	1	
	パトロール時 のβ 線測定 能力向上		83	フレキシブルな遮へい材料	プローブの改良によるβ 線検知方法は多数提案されたが、いずれも開発段階とされている。その中で、薄層プラスチックシンチレータを用いる方法も研究段階であるが、提案によっては実現に近いともされている。また、既往のプローブの利用方法を工夫することでベータ線の測定を可能にする研究の提案もあった。 測定機器の軽量化に関しては、遮へい材の工夫とプローブの改良の提	・海外ではハンディのベータ線モニタを開発済みである。また、プラスチックシンチレータの実現性は高いと考えられる。今後福島サイトへの適用
			304	非破壊遠隔測定		
			320, 622, 725	プラスチックシンチレータ箔		
				プローブの改良		
			472	ガスフロー式サーベイメータ		
			559	濃縮前処理、イオン吸着剤		
			621	β 表面線量計、細い窓を活用した遮へい		
(3)微小漏え			623	オンラインモニタリング、Sr90		性を検討するため、実証の状況についてメーカー等に確認するべきであ
いを検出でき		測定機器の軽量化	83	フレキシブルな遮へい材料	- 品、医療で用いられている染料の提案が多数あり、これらは人体には影響ないが、除染への影響や脱色方法、環境への影響は今後検討すべき課題とされている。β 線照射により有機色素が分解する特性を検知に利用する方法も研究されている。	ベータ線モニター、プラスティックシンチレータとも合わせて、実作業での効率も含めて検討を行うべきである。β線の定量計測でなく検知であれば、現状のサーベイメータにγ線とβ線の物質透過力の差を応用するアタッチメントを加えることで適用可能と考えられる。 ・有機染料はβ線で分解するため、放射線量の把握とその環境下で使用可能な染料の選定が重要である。一方で、これを利用した検知は可能性
る技術			472	ガスフロー式サーベイメータ		
			485	プローブの改善		
	タンクからの 漏 えい 水 の 視認性向上	染料 の の		シューラの改善 染料の利用		
			15, 552	栄料の利用 汎用染料の活用		
			191	ホースペッカー ホースペッカー		
			225, 354	成用条件利用、ダングの部分的自己塗表 蛍光色素		
			379	単元巴系 様式2なし		
			720	リグニン	-	がある。汚染水に添加物を入れる方法は水処理への影響も考慮しなけ
		照射による変色	532	リソーノ 照射量による色相変化	-	ればならない。
			570	漏えい検知塗料、ゲル		
			612	瀬んい使和坐科、ケル 顔料のβ線による変色の調査		
			UIZ	終れいり 球による変ピい調査		1

特にご提案をお	願いしたい技術			ご提案	で担党によりによせなるほう	ᆂᄜᆖᆡᅸᅠᄼᆖᅩᇉᆛ그ᄭᆝ
項目	小項目	分類	番号	関連するキーワード	ご提案いただいた技術の傾向 水位計測による漏えい検知も多数提案された 美圧式センシングは燃 し	専門家レビュー会議によるコメント
	水の漏えい検知	水位センサ	111	遠隔監視システム	料貯蔵用タンクおよび米軍に採用されている検出方法である。タンクの継ぎ手部の圧力変化で漏えいを検知する方法、タンク表面を分光機で監視する方法なども提案された。地上タンクの底板にアクセスできる構造を採用し、漏水または底板そのものを目視観察する方法も提案された。	
(3)微小漏え いを検出でき る技術			176	レベル計、回転表示灯		
			331	差圧式センシング		一である。 環境が安定している地下ダングでは有力な技術であるが、地 上タンクでの適用は測定条件の確認が必要である。
			498	高精度液面計		
			58	機能性継ぎ手		・二重鋼殻タンクについては、鋼殻の間でモニタリングすることが可能と
		漏えい検知	121	ゼリ一化、可視化		考えられる。
			638, 645	レーザー分光機、遠隔同定		
		2日 二 1 255 4日	214	排水溝を備えた基礎構造		
		漏えい監視	215	監視可能なタンク底板とタンク移設方法		
			132	超高圧液体窒素除染技術	液体窒素、鋼球や水を高圧で吹き付ける方法、レーザーで表面を気化させる方法、タンクを電極としてタンク内で電気分解を行う方法などによる。 遠隔除染が提案されている。除染後のスラッジを可動長尺ノズルで遠隔回収する方法も提案された。溶断の遠隔技術、油田や原子力で実績のある遠隔解体技術も提案されている。そのほか、剥離塗料による除染の合理化も提案されている。 除染廃棄物の取り扱いに関しては、除染排水の処理方法、廃棄物の固化剤の提案や、鋼材等を溶融して減容または廃棄物容器等として再利用する方法が提案された。 そのほか、除染や解体の手順に関するノウハウ、CAD上でのシミュレーションによる手順検討などが提案されている。・遠隔技	・除染方法を選定する際には、汚染の状況、許容される除染期間など現地のニーズを十分に考慮する必要がある。また、二次廃棄物の処置も考慮すべきである。不必要に高性能な方法を採用する必要はなく、水だけの除染のみで効果が得られた実績もあることを踏まえて検討すべきであ
		除染技術	224, 588	スチールブラスト遠隔除染		
			305	ファイバーレーザによる除染、遠隔処理		
			553	レーザー除染技術、溶断、自動化技術		
			613	電気化学分解、超音波洗浄		│ ・液体窒素吹付、ファイバーレーザ法など比較的先進的な方法について
			630	サンドブラスト除染		・液体室系吹付、ファイバーレーリ法など比較的元進的な方法について は除染作業に要する時間や面的除染への有効性についても十分な検討
			696	水、高圧水、遠隔除染		が必要である。
			333	リモートマニュピレータによる除去物の回収		・抽出された技術は、海外で採用されているか適用を検討中のものが含
			431	スラッジ、回収方法		・抽面された技術は、海外で採用されているが適用を検討中のものが含しまれている。
		遠隔解体作業	553	レーザー除染技術、溶断、自動化技術		
(4)ボルト締 め型タンクの			164	ロボット技術、レーザー技術		・・その他、提案されているもの以外にもドライアイスフラスト、アイスフラストなどの除染技術がある。
め 登り り り か 会作業の			167	解体円滑化		
円滑化		その他	419	剥離性樹脂によるタンク内面除染		・遠隔技術は原子力を含め多くの産業ですでに適用されている。
			729	剥離塗料による汚染固定と除染合理化		サフリカスのないわせ料の再利用は良い祖よるもり サフリカスの姿勢
	除染廃棄物 の取り扱い	除染廃液の処理	756	電気化学的処理プロセス、塩化物の除去、錯体の酸化		・サイト内でのタンク材料の再利用は良い視点であり、サイト内での溶融 炉設置の可能性も含めて検討に値するものである。
		廃棄物の固化	420	汚染廃棄物の固化剤		
		廃棄物のリサイクル	556	放射性廃棄物への作り替え		
			644	鋼材の除染とリサイクル		
	その他	除染作業の合理化	188	除染手順		
			233, 336	除染、撤去、解体技術全般		
			306	除染最適化検討ツール、CADシミュレーション		
			445	除染技術全般(除染、減容化、再利用)		

特にご提案をお願いしたい技術		ご提案			->10 st. 1 10 st. 1 11 st.	
項目	小項目	分類	番号	関連するキーワード	- ご提案いただいた技術の傾向	専門家レビュー会議によるコメント
	貯留水のゲ ル化、固化、 吸着	ゲル化	64	ゲル化剤	その他、特に技術提案をお願いしたい事項以外の提案として、貯留水 をゲル化または固化して漏水を防ぐ方法、漏水後に吸水または吸着する 材料が提案されている。	・貯留水のゲル化・固化については、その後の処理に課題が多いと考えられる。再度液体に戻せる技術があれば可能性はあるかもしれないが、困難と考えられる。
			121	ゼリー化による漏えい防止		
			37	固化剤、安定剤	1977年が使来で化ている。	四姓とうんり作る。
			42	空気硬化性混和剤	් _{රි} ං	・非セメント・非ポリマー系の固化材は1960年代から建設に用いられてい
		固化	161	無機系固化剤		る材料であり、物質の吸着性に優れる。固化後の状態はコンクリートに似ているものであり、他の1F工事への検討にも値する。
			468	非セメント非ポリマー固化材] ボルト型タンクを、除染後に内部をライニング、フランジ部を溶接または	ているものであり、他のTF工事への検討にも辿りる。
			471	石膏、タンク全体	樹脂で補修する等により、再利用する方法も多数提案された。	・ボルト締めタンクをライニングして再利用する提案は、廃棄物低減、コスト削減、制動X線遮へいの観点からメリットがあると思われるが、耐震に関しては追加対策が必要である。また、貯留効率改善、作業者の被ばく
		吸着、吸水	16	バイオセーフティー、ナノ複合材料吸着剤	コンクリート製の地下貯留設備と遮水壁を兼用する構造の提案があっ	
			130	ゼオライト、タンク隙間充填、放射性核種の回収		低減と補修の品質管理の観点でも更なる検討が必要と考えられる。
			171	高吸水性高分子	タンク漏えい時に吸着材をタンク周りに配置する方法、タンク内で水処	
			365	感温性高吸水性樹脂	理する方法、貯留水の処理方法と処分方法等についても提案があった、	
	タンクの雨除		25, 127, 196, 207	屋根と樋] 」なお、海外の多くの組織が汚染水問題に関する実績と経験を提示して	
	け		124	屋内式タンク	いる。	
	ボルト型タン クの補修		202	ゴム充填		
			513, 689, 690, 693	接合部		
			630	二重底構造、ゴムライニング(鉛入り)、オーバフロー接続		
(E) h , h +			722	タンク浮上工法		
(5)タンク本 体以外のご	地下タンク兼遮水壁		96	遮水壁内部に汚染水を貯留		
提案			456	コンクリートニ次製品、土留め、貯留、遮水構造		
	タンク内および漏留水の町型(添着)の町型(水加)の水が水が水が水が水が水が水が水が水が水が水が水が水が水が水が水が水が水が水が		43	凍結、濃縮、減容		
			50	様式2なし		
			55	凝集沈殿		
			73	農薬、分解		
			115	ゼオライト、地下壁、Sr吸着		
			122	貯水頁岩		
			162	オゾン水、分離		
			178	様式2なし		
			247	ストロンチウム、セシウム、吸着処理		
			277	浄化		
			285	放射能除去機能		
			504	緊急対策、漏えい		
			525	汚染水処理		
			534, 631	水処理設備		
			715	バックアップ		
	汚染水問題 に関する海 外の経験の 共有		142, 382, 445, 462, 539, 766	海外の原子力関連機関、電力関連研究所等		