

廃炉·汚染水対策事業費補助金

圧力容器/格納容器の腐食抑制技術の開発

成果報告

平成29年7月 技術研究組合 国際廃炉研究開発機構

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning 目次

- 1. 目的
- 2. 1F RPV/PCV機器の腐食対策方針
- 3. 全体工程
- 4. 中長期ロードマップにおける位置付け
- 5. 平成28年度進捗状況(実施工程と実績)
- 6. 防錆剤の開発状況のまとめ(平成27年度までの成果)
- 7. 防錆剤の開発に関する課題
- 8. 公募要領の実施内容と課題との対応
- 9. 平成28年度全体計画
- 10. 平成28年度事業成果
- 11. 全体のまとめ
- 12. 他研究開発プロジェクトとの関係
- 13. 平成28年度実施体制

1.目的

●事故発生後,海水に曝された圧力容器(RPV)/格納容器(PCV)の機器に対し,燃料デブリ取り出しまでの長期間,構造材料の腐食の進行を防ぎ,健全性を維持するための腐食抑制技術の実機適用性を評価・開発し,円滑な廃炉作業に資する。
 ●事故直後から実施されている注水の脱気処理やPCV内の窒素封入により,RPV/PCVの腐食はある程度抑制されていると考えられるものの,燃料デブリ取り出し時にはPCV内は大気開放状態になることも考えられることから,窒素封入に代わる

腐食抑制技術(防錆剤)を確立する。

2.1F RPV/PCV機器の腐食対策方針

●現在は,窒素封入による溶存酸素除去により機器の腐食を抑制

●デブリ取り出し時の環境変化(窒素封入→大気開放)に備えた腐食抑制策が必要 →国プロで腐食抑制策(防錆剤)を検討

3. 全体工程		「圧力容器/格納容器の健全性評価技術の開発」での実施範囲 今回の実施範囲								
	第1期			第2期						
事項/年度	H23 (2011)	H24 (2012)	H25 (2013)		H26 (2014)	H27 (2015)		H28 (2016)		
		(2012)			(前) ₩₩ ₹	「山」「石内溝浩物の取出技術	の問発			
				原子炉格納容	器水張りに向けた調査	・補修(止水)技術の開発	刀刑无			
	原子炉格納容器内部調査技術の開発									
他関連PJ	原子炉圧力容器内部調査技術の開発									
		」 「「「」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」」」 「」」 「」」」 「」」」 「」 「								
				事故進展	解析技術の高度化によ	る炉内状況の把握				
1. 実事故履歴分析に基づく試 験条件の検討								2017年夏頃: 燃料デブリ取り出し		
2 百子 「「「」」の 日子 「「」 日子 「「」 日子 「「」 マック 日子 「」 マック 日子 「」 日子 「」 マック 日子 「」 マック 日子 「」 ロック 日子 「」 「」 ロック 日子 「」 ロック 日子 「」 日子 「」 ロック 日子 「」 ロック 日子 「」 ロック 日子 「」 日子 「」 日子 「」 日子 「」 日子 「」 」 日子 「」 日子 「」 」 日子 「」 日子 「」 日子 「」 」 日子 「」 」 日子 「」 日子 「」 日子 「」 」 日子 「」 」 日子 「」 日子 「」 日子 「」 日子 「」 「」 日子 「」 」 日子 「」 」 」 日子 「」 」 日子 「」 」 日子 「」 」 」 日子 「」 」 」 日子 「」 」 」 日子 「」 」 日子 「」 」 日子 「」 」 」 日子 「」 」 」 」 」 」 」 日子 「」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」	基礎試驗							万針の決定		
			, 実	2機条件を考	慮した構造材料	腐食試験				
3. 原子炉注水配管等の腐食評		冷却水の流動や異種金属接触による腐食加速影響評価								
価										
4. 腐食抑制策の開発		試評価		広 食:	抑制策詳細評価			な食抑制技術の確立▼		
5 広力空間ペデック=外位っ、		試評価			詳細評価		()	新規別PJ*で実施)		
5. 圧力容器ペテスダル鉄筋コン クリート劣化評価		コンクリ	リート侵食状	況の検討						
6. 圧力容器ペデスタルに対する		(;	基礎データ整		デブリによる侵食	の影響評価	(;	新規別PJ*で実施)		
同価ノノリ洛ト影音計画							IIII [–]			
7. 原子炉容器, 圧力容器ペデ スタルの耐震強度評価	-	試評価	耐震強度	評価による炊	然料デブリ取出し	工法の成立性評価	()	新規別PJ*で実施)		
8. 腐食抑制システムの概念設 計							概念設	は計・管理要領の策定▼		
IRID					©Int	ernational Research Institute	e for Nucle	ear Decommissioning		

4. 中長期ロードマップにおける位置付け

- 燃料デブリ取り出しに向けた環境整備の一環
- 2017年度の燃料デブリ取り出し方針の決定に向け、腐食抑制技術を開発し、長期間、 RPV/PCV機器の腐食減肉を抑制することで、RPV/PCV機器の耐震健全性の維持を図り、燃料デブリ取り出し工法の成立性を確保する。

東京電力(株)福島第一原子力発電所の廃止措置等に向けた主要な目標工程

5. 平成28年度進捗状況(実施工程と実績)

- 6. 防錆剤の開発状況のまとめ(平成27年度までの成果)
 - ●腐食現象には様々な環境因子が影響するため、小循環冷却方法、臨界管理手法、水処理方法などが明確に定まっていない段階で防錆剤を一つに絞り込んでしまうと、実機適用時の環境変化に対応できなくなる恐れがある。そのため、不確実性が大きい現状では、少なくとも「現時点での実機には適用可能」で、かつ「特性(腐食抑制メカニズム)の異なる」防錆剤を複数準備しておきたい。
 - ●防錆剤メーカへのヒアリングや文献等をもとに選定した以下の防錆剤について、現状の1F特有の環境条件(温度、水質、照射、流速など)を考慮した500時間の浸漬試験(スクリーニング試験)による防錆効果の確認を行い、防錆剤候補の絞り込みを実施した。(不働態化し腐食が抑制される濃度1、2の条件を確認)

図2 炭素鋼 (PCV材)の塩化物イオン濃度と防錆剤添加濃度に関する 腐食形態のイメージ図

					リン		
防錆剤	タンクステン酸 ナトリウム	モリフ・デン酸 ナトリウム	五ホウ酸 ナトリウム	亜硝酸 ナトリウム	亜鉛/炭酸ナ トリウム混合 リン酸塩	亜鉛/モリフ'デ ン酸ナトリウム混 合リン酸塩	メタバナジン 酸ナトリウム
防食皮膜 (メカニズム)	酸化皮膜型	酸化皮膜型	酸化皮膜型	酸化皮膜型	沈殿皮膜型	酸化皮膜+ 沈殿皮膜型	酸化皮膜型

6. 防錆剤の開発状況のまとめ(平成27年度までの成果)

●平成27年度 防錆剤の絞込み結果			:選定した防錆剤		:平成28年度実施範囲			
防錆剤						リン	踆塩	
		タンクステン酸 ナトリウム	モリフテン酸 ナトリウム	五ホウ酸 ナトリウム	亜硝酸 ナトリウム	亜鉛/炭酸ナ トリウム混合 リン酸塩	亜鉛/モリフ'テ' ン酸ナトリウム混 合リン酸塩	メタハテシン 酸ナトリウム
ا ر)	坊食皮膜 〈カニズム)	酸化皮膜型	酸化皮膜型	酸化皮膜型	酸化皮膜型	沈殿皮膜型	酸化皮膜+ 沈殿皮膜型	酸化皮膜型
	非照射	0	×	0*	0	0	0	×
防	照射	▲ (要増量)	_	0	×*	▲ (要増量)	0	-
游 錆 効 果	流水環境	0	Ι	0*	0	0	0	Ι
	錆び面		Ι	0*	0*	▲ (要増量)	0	Ι
	耐局部 腐食性	(H28年度 実施予定)	Ι	0*	-	(H28年度 実施予定)	(H28年度 実施予定)	Ι
副次的	五ホウ酸ナ トリウムとの 複合影響	0	Ι	Ι		0	0	Ι
旳 影 響	水処理 設備への 機能影響	▲ (H28年度詳細 評価実施予定)	_	▲ (H28年度詳細 評価実施予定)	_	▲ (H28年度詳細 評価実施予定)	▲ (H28年度詳細 評価実施予定)	_
((総合評価 H27年度)	0	×	0	×	0	0	×

():条件付で可

△:懸念あり

×: 厳しい

7. 防錆剤の開発に関する課題

- 課題① すきま腐食などの局部腐食による漏えいを起こさない防錆剤の選定が必要 である。
- 500時間の浸漬試験ではその判断はできないため,時間によらない局部腐食の
 発生・進展可能性の評価が必要となる。
- 今年度絞り込んだ防錆剤について, 電気化学的測定等による局部腐食の発生・ 進展可能性有無の評価を実施したうえで, 現時点で実機適用可能な防錆剤を 選定する。(「適用性の序列」を明確にする。)
- 課題② リン酸塩系防錆剤について,燃料デブリを想定した高温部での析出/固着 による性能劣化の有無について懸念されるため,固着影響試験の実施が必 要である。
- 課題③ 平成27年度の結果から水処理設備への機能影響が一部認められていることの。 とから、詳細評価を実施し、実機への適用性をさらに検討する必要がある。
- 課題④ 防錆剤注入システムに関する概念設計を行うとともに、管理要領を策定して おく必要がある。

8. 公募要領の実施内容と課題との対応

(1)腐食抑制策の効果・影響評価

腐食試験の結果に基づき選定された防錆剤を添加した溶液中で構造材料の電気 化学的な測定を行う。非照射およびガンマ線照射下での腐食試験を行い、局部的な 腐食の発生および進展の可能性有無の評価を実施する。その結果から実機適用可 能な防錆剤を選定する。(課題①に対応)

また, 燃料デブリでは崩壊熱による発熱があることから, 発熱部に防錆剤が到達した場合の性能劣化を想定する。それをもとに, リン酸塩系防錆剤の析出量の温度依存性データ等を取得し, 固着影響の評価を行う。(課題2に対応)

さらに、SARRY、MRRS(ALPS)等の汚染水浄化設備への影響等を踏まえ、防錆剤を 使用した場合の既存水処理システムへの全体的な影響評価、防錆剤濃度に対する 吸着性能への影響評価、小循環水処理ループを想定した評価等を行う。 (課題③に対応)

(2)腐食抑制システムの概念設計(その1)他核種除去設備への影響

各影響評価の検討をもとに、腐食抑制策を実機に適用する腐食抑制システムの概 念設計を行うとともに、管理要領の策定を行う。その際、「燃料デブリ臨界管理技術 の開発」の研究開発で検討される臨界防止技術との連携を図りながら、腐食抑制シ ステムの検討を行う。(課題④に対応)

IRID

(1)腐食抑制策の効果・影響の評価

- ①電気化学測定による防錆剤の耐局部腐食性の評価(課題①に対応)
 - ●不働態化した材料のひとつであるステンレス鋼に対するすきま腐食の発生可能性 有無の評価の指標として、腐食すきま再不働態化電位(E_{R,CREV})があり、その測 定方法が規格化されている(JIS G 0592)。(図3)
 - 今回, 炭素鋼(PCV材)への適用にあたり, すきま腐食の「発生過程(Step |)」および「成長過程(Step ||)」において, 必要に応じ一部条件変更を検討し, 防錆剤によるE_{RCREV}を取得する。

図3 JIS G 0592によるすきま再不働態化電位(ERCREV)測定方法の模式図

図4 すきま腐食発生の可能性有無判断の模式図

- (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価(課題①に対応)
 - ●すきま腐食の進展可能性有無の評価方法として、定電位すきま腐食試験がある。 E_{R,CREV}と同様の手順ですきま腐食を発生させたのち、任意の電位で一定時間保持し、その間の電流値の時間減衰挙動からすきま腐食の進展性を評価する。定電位すきま腐食試験による腐食深さに対するガンマ線照射による影響有無を確認するため、ガンマ線照射環境下(2条件)で同様の評価を行う。(図5)

すきま腐食進展評価試験

- (1)腐食抑制策の効果・影響の評価
 - ②リン酸塩系防錆剤の高温部での固着影響評価(課題②に対応)
 - ●1Fでは, 燃料デブリによる崩壊熱による発熱があることから, 発熱部に防錆剤が到 達した場合の性能劣化が懸念されるため, リン酸塩系防錆剤(亜鉛/炭酸ナトリウ ム混合リン酸塩および亜鉛/モリブデン酸ナトリウム混合リン酸塩)の析出量の温度 依存性データ等を取得し, 固着影響の評価を行う。
 - (例1) バッチ試験(図6)

<試験条件>

- ·水温:50~80℃
- ・1000倍希釈人工海水(塩化物イオン濃度約19ppm)又は 10000倍希釈人工海水(塩化物イオン濃度約1.9ppm)
- ·防錆剤濃度:2条件

<試験方法>

- 1) 希釈人工海水を入れた耐熱瓶に防錆剤を添加し, 所定濃度に調製する。
- 2) 密閉し振とうする。
- 3) 所定温度に保持した恒温槽に静置する。
- 4) 所定の時間後に耐熱瓶を取り出し、上澄水をフィルター にてろ過する。
- 5) スケール因子(防錆剤由来の成分)を濃度測定する。

<評価項目>

・試験前後のスケール因子の濃度を比較することで、固着影響の有無を評価する。

図6 バッチ試験(例1)のイメージ

- (1)腐食抑制策の効果・影響の評価
 - **②リン酸塩系防錆剤の高温部での固着影響評価(課題②に対応)**
- (例2) 通水試験(図7)
- <試験条件>
- ・水温:65℃
- 流速:0.03~0.49m/s
- ・1000倍希釈人工海水(塩化物イオン濃度約19ppm)又は
 10000倍希釈人工海水(塩化物イオン濃度約1.9ppm)
- ·防錆剤濃度:2条件
- <試験方法>
- 1) 所定濃度に希釈した人工海水に防錆剤を所定濃度添加し、試験溶液を作製する。
- 2) 試験装置の循環水槽に試験溶液を投入し、冷却水とする。
- 3) 熱負荷部分(テストチューブ)の内部に温水,外部に 冷却水を通水し,所定の試験温度および流速で温水, 冷却水を循環させる。
- 4) 所定の時間後にテストチューブを取り出し, テストチューブ表面の付着物量を評価する。
- 5) 試験溶液の一部をフィルターにてろ過し、 ろ過水に対して成分濃度測定を行う。
- <評価項目>
- ・付着物量を評価することで固着影響の有無を評価する。 ・試験前後のスケール因子の濃度を比較することで,

固着影響の有無を評価する。

- 9. 平成28年度全体計画
 - (1)腐食抑制策の効果・影響の評価

②リン酸塩系防錆剤の高温部での固着影響評価(課題②に対応)

●リン酸塩系防錆剤は、場合によっては、リン酸イオンが微生物の栄養源となり、微生物の増殖や防錆剤成分の消費されることも想定されるため、今後1Fへの適用にあたっては、滅菌剤との併用も考えられる。そこで、リン酸塩系防錆剤に滅菌剤を併用した場合の炭素鋼(PCV材)への腐食影響有無ついて、試験等による確認を行っておく。

- 9. 平成28年度全体計画
 - (1)腐食抑制策の効果・影響の評価

③水処理設備への影響評価(課題③に対応)

●平成27年度の結果から、4種類の防錆剤は、いずれも少なからず水処理設備への 阻害影響が確認されたが、水処理設備全体の影響評価となっていない。

(既存水処理設備への全体的な影響評価)

●平成27年度の性能評価における塩分・防錆剤濃度はデブリ取り出し時に想定される滞留水のマスバランス評価をベースにしており、防錆剤が全て下流側に流出する事を想定して評価した。しかし、小循環ループに移行した際は下流設備に流出するPCV内滞留水は少なく、地下水等により希釈されると想定される。そこで防錆剤濃度に対する吸着性能への影響評価が求められる。

(防錆剤濃度に対する吸着性能への影響評価)

防錆剤		며 여 수 가 바 수	既設多核種		増設多核種		高性能 多核種	ŜARRY™	淡水化
		防폐剤濃度	前処理 工程※1	吸着塔 エ程	前処理 工程※2	吸着塔 エ程※3	吸着塔 エ程※3	吸着塔 エ程※3	RO処理 エ程
A	タングステン酸ナトリウム	3000 ppm	0	0	0	Δ	Δ	0	0
В	亜鉛/モリブデン酸 ナトリウム 混合リン酸塩	7000 ppm	Δ	Δ	Δ	Δ	Δ	Δ	0
С	五ホウ酸ナトリウム	10000 ppm (as B)	Δ	Δ	Δ	Δ	Δ	Δ	0
D	亜鉛混合リン酸塩 +炭酸 ナトリウム	800 ppm	Δ	Δ	Δ	Δ	Δ	Δ	0
E	添加材なし(ブランク)	_	_	_	_	_	_	_	_

表1 平成27年度の防錆剤による水処理設備への影響評価結果のまとめ

影響度小:○ 影響度中:△ 影響度大:×

※1: 鉄共沈(FeCl₃添加)+炭酸塩沈殿工程

※2: 炭酸塩沈殿工程 (Na₂CO₃+NaOH)

※3: 対象核種はCs、Sr、Sb、I

- (1)腐食抑制策の効果・影響の評価
 - ③水処理設備への影響評価(課題③に対応)
 - ●平成27年度で抽出された防錆剤の1つに五ホウ酸ナトリウムがある。これは防錆効果だけでなく臨界防止の観点からも極めて重要なものであるが、一方で五ホウ酸ナトリウムが混在すると、多核種除去設備の炭酸塩沈殿工程でのSr沈殿が阻害され(図7)、さらに吸着カラム試験でもSrが早期に破過する傾向が明らかになった(図9)。将来の小循環での水処理に向けて処理水中にホウ素が含まれる場合の処理システムの検討を行う必要がある。
 - (処理水中に防錆剤が含まれる場合の水処理システムの検討)

図8 (既存/増設)多核種除去設備前処理工程でのSr濃度

図9 増設多核種除去設備想定水質を用いたSr吸着試験

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価(課題③に対応)
 - 1)既存水処理設備への全体的な影響評価

(その1):東芝分

- ●多核種除去設備を想定し前処理工程への影響, 薬液使用量への影響, 炭酸塩沈殿工程でのコ バルト除去性能への影響を評価する。
 - ◆ 前処理工程について、濃縮によりろ過工程への影響が懸念されるため、濃縮スラリーの粘性 評価を行う。濃縮時を想定し10倍希釈人工海水(塩化物イオン濃度約1900ppm)にカルシウムおよびマグネシウムを添加し、所定濃度の防錆剤を添加する。
 - ◆ 前処理工程における薬液使用量の増加量評価を行う。前述の前処理工程を模擬した試験における炭酸塩沈殿作成時の使用薬液量をもとに評価する。さらに、吸着工程における薬液使用量の増加量評価を行う。前述の前処理工程を模擬した試験において生成される前処理水を中和する際の使用薬液量より評価する。
 - ◆ 炭酸塩沈殿工程におけるコバルト除去性能への防錆剤添加影響評価として、10倍希釈人工 海水(塩化物イオン濃度約1900ppm)を基本とし、所定濃度の防錆剤を添加し、コバルトを添 加した溶液について炭酸塩沈殿操作を施し、除去性能を評価する。

IRID

(1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価(課題③に対応)

1)既存水処理設備への全体的な影響評価

(その2):日立GE分

- ●平成27年度に未評価であった核種(重金属(代表としてコバルト)およびルテニウム)の除去性能 への影響を評価する。また,複数の核種の除去性能に対する複合的影響を評価する。
 - ◆ 重金属の除去性能への防錆剤添加影響評価として、10倍希釈人工海水および100倍 希釈人工海水(塩化物イオン濃度1900ppmおよび190ppm)に所定濃度の防錆剤および コバルトを添加した溶液を用いた重金属吸着材に対する浸漬試験を行い、重金属除去 性能を評価する。
 - ◆ ルテニウムの除去性能への防錆剤添加影響評価として、10倍希釈人工海水および100倍 希釈人工海水に所定濃度の防錆剤およびルテニウムを添加した溶液を用いた吸着材のル テニウム除去性能確認試験を行い、ルテニウム除去性能を評価する。
 - ◆ 複数の核種の除去性能に対する複合的影響評価として、10倍希釈人工海水に所定濃度の防錆剤および主要核種を添加した溶液を用いた複数吸着材の核種除去性能確認試験を行い、核種除去性能を評価する。

- (1)腐食抑制策の効果・影響の評価
 - ③水処理設備への影響評価(課題③に対応)
- 2)防錆剤濃度に対する吸着性能への影響評価

(その1):東芝分

- ●平成27年度の性能評価における塩分・防錆剤濃度はデブリ取り出し時に想定される滞留水のマスバランス評価をベースにしており、防錆剤が全て下流側に流出する事を想定して評価した。しかし、小循環ループに移行した際は下流設備に流出するPCV内滞留水は少なく、地下水等により希釈されると想定される。
- ●そこで平成27年度に吸着性能への影響が認められた防錆剤を対象に、平成27年度と同一の吸着材で塩分・防錆剤濃度を低下させた濃度条件での防錆剤濃度の吸着影響を評価する。
- ●なお、ヨウ素などは汚染水中の存在形態が複数あることが知られている。また、多核種除去装置において、ヨウ素酸イオンとアンチモン酸イオンのような複数の形態、核種を同時に吸着する吸着材を使用している。そのため複数の対象元素を溶解した試験水を用いた吸着試験を行う。また、平成27年度には評価していない吸着材についても必要に応じ影響評価を行う。

- (1)腐食抑制策の効果・影響の評価
 - ③水処理設備への影響評価(課題③に対応)
- 2)防錆剤濃度に対する吸着性能への影響評価

(その2):日立GE分

- ●平成27年度の性能評価における塩分・防錆剤濃度はデブリ取り出し時に想定される滞留水のマスバランス評価をベースにしており、防錆剤が全て下流側に流出する事を想定して評価した。しかし、小循環ループに移行した際は下流設備に流出するPCV内滞留水は少なく、地下水等により希釈されると想定される。
- ●そこで平成27年度に吸着性能への影響が認められた防錆剤を対象に、平成27年度と同一の吸着材で防錆剤濃度を低下させた濃度条件での核種除去性能を評価する。
- ◆ 10倍希釈人工海水に所定濃度(平成27年度の1/10)*の防錆剤および主要核種を添加した溶液を用いた各吸着材の核種除去性能確認試験を行う。(*平成27年度の1/100は、1/10で影響があると判断した場合に行う。)

- (1)腐食抑制策の効果・影響の評価
 - ③水処理設備への影響評価(課題③に対応)
 - 3)処理水中に防錆剤が含まれる場合の水処理システムの検討
 - (その1):東芝分
 - ●平成27年度の試験の知見として、特に処理水中にホウ素が含まれる場合に、Cs/Sr同時吸着材のSrの吸着能が低下することが明らかになっている。SrはCsと並ぶ重要核種であるため、ホウ素存在下にてSrの吸着除去を行う場合のSr除去性能を評価する。

<試験条件>

・対象水質:模擬汚染水(海水希釈倍率は別途調整)+防錆剤

·対象元素:Sr

- ・吸着材 :Cs/Sr同時吸着材,追加選定のSr吸着材
- ・濃度条件:Sr:トレーサーを添加
- ・試験方法:バッチ試験
- ・ホウ素濃度:平成27年度設定値,添加なし

<評価方法>

・Srの濃度分析を実施する。その結果からホウ素等が混入していてもSrの吸着能を有する吸着材 を選定する。

- (1)腐食抑制策の効果・影響の評価
 - ③水処理設備への影響評価(課題③に対応)
 - 3)処理水中に防錆剤が含まれる場合の水処理システムの検討
 - (その2):日立GE分
 - ●平成27年度の成果で、淡水化装置(RO膜)で添加した五ホウ酸ナトリウム中の8割のホウ素がRO濃縮水に移行することを確認している。ほとんどの五ホウ酸ナトリウムが多核種除去設備側へと流入することになるため、平成27年度の成果、前記1)項、2)項の結果および3)項のその1の「ホウ素存在下のSr除去性能評価」に基づいてホウ素除去システムの必要性検討を行う。
 - ●前記1)項,2)項の結果および3)項のその1の評価を基に,水処理設備に影響を与える防錆 剤濃度について検討すると共に,ホウ素除去を必要と評価した場合は,システム導入に対す る課題抽出を行う。

9. 平成28年度全体計画

(2)腐食抑制システムの概念設計(課題④に対応)

- ●各影響評価の検討をもとに選定した防錆剤(腐食抑制策)を実機に適用するための 腐食抑制システムの概念設計を行う。防錆剤を効果的に使用するためには、1Fにお いても一般産業界での使用方法と同様、循環式での適用が望ましい。防錆効果が 実機RPV/PCV内で確実に得られるためのシステム検討を行うとともに、これまでの研 究開発成果をもとに、防錆剤の適用濃度や適用時の防錆剤成分の管理値や水質基 準など、防錆効果を維持するための管理要領をまとめる。
- ●小循環水処理ループの防錆剤濃度や水質を測定することや、水サンプリングを実施することも含めた管理方法を検討し、システムの概念設計を行う。(下図)
- ●それら検討にあたっては、1Fの安全、確実、合理的、迅速、及び現場志向を考慮したものとする。さらに、「燃料デブリ臨界管理技術の開発」の研究開発で検討される臨界防止技術との連携を図りながら、腐食抑制システムの検討を行う。

温度	<mark>塩化物イオン</mark> 濃度(ppm)	防錆剤 ^{注1} 添加	五ホウ酸ナトリウム添加	線量率	
50°C		あり	なし	0(非照射), 0.2, 4 kGv/h	
	19 ^{涯2} (1000倍希釈人工海水)	なし	あり		
		あり	あり	4 K Gy / H	

注1 亜鉛/モリブデン酸ナトリウム混合リン酸塩, 亜鉛/炭酸ナトリウム混合リン酸塩, タングステン酸ナトリウム

注2 自然電位(Esp)測定では一部の条件において塩化物イオン濃度0 ppm(純水)中における測定も実施

10. 平成28年度事業成果

(1)腐食抑制策の効果・影響の評価

①電気化学測定による防錆剤の耐局部腐食性の評価

●電気化学測定要領

- 図23 電気化学測定装置の構成例(照射)
- 3電極(試料極(試験片),対極,照合電極)式の電気化学測定装置を用いて測定を実施した。
- 自然電位(E_{sp})測定の際は、対極は設置せず、試料極および照合 電極の2電極にて測定を実施した。
- ・ 照合電極にはダブルジャンクション型のAg/AgCl(飽和KCl)電極
 (SSE)を用いた。

図24 E_{sp}測定手順の模式図

● 自然電位(E_{sp})測定の試験時間は、外部評価委員のコメントおよび既往の測定例を基に非照射は500 h、照射は168 hと設定した。

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価 ①電気化学測定による防錆剤の耐局部腐食性の評価

●電気化学測定要領

RD

● E_{R, CREV}とE_{SP}を比較し、局部腐食発生の可能性有無を評価する。

10. 平成28年度事業成果
 (1)腐食抑制策の効果・影響の評価
 ①電気化学測定による防錆剤の耐局部腐食性の評価

- 定電位すきま腐食試験におけるSTEP1および2は腐食すきま再不働態化電位測定の手順に準じた電流および電位印加条件とする。
- STEP3の設定電位は、E_{sp}測定およびE_{R, CREV}測定の結果に基づき決定する。

IRID

10. 平成28年度事業成果
 (1)腐食抑制策の効果・影響の評価
 ①電気化学測定による防錆剤の耐局部腐食性の評価

●照射環境下における電気化学測定実施状況

10. 平成28年度事業成果

- (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価

●自然電位(E_{SP})測定結果(その1) 測定例:東芝分

IRID

10. 平成28年度事業成果

- (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価

●自然電位(E_{sp})測定結果(その2)測定例:日立GE分

● 自然電位の経時変化から、測定終了前1hの平均値をEspとして評価した。

IRID

- 10. 平成28年度事業成果
- (1)腐食抑制策の効果・影響の評価
 ①電気化学測定による防錆剤の耐局部腐食性の評価

●自然電位(E_{sp})測定結果まとめ(その1):東芝分

亜鉛/モリブデン酸ナトリウム混合リン酸塩

図31 自然電位(E_{SP})測定結果まとめ

- E_{sp}は防錆剤の種類により変化するが、防錆剤濃度および五ホウ酸ナトリウム添加の有無にはほとんど影響されないことが分かった。また、照射線量の増加に伴い、E_{sp}は高くなる傾向が認められた。
- 防錆剤の種類ごとに最も高いE_{sp}(4.0 kGy/hの時のE_{sp})をE_{R, CREV}との比較に用い、局部腐食発生可能性を評価した。

IRID

10. 平成28年度事業成果
 (1)腐食抑制策の効果・影響の評価
 ①電気化学測定による防錆剤の耐局部腐食性の評価
 ●自然電位(E_{SP})測定結果まとめ(その2):日立GE分

線量率 / kGy・h⁻¹

線量率 / kGy・h⁻¹

- 五ホウ酸ナトリウムでは、E_{sp}への添加濃度依存性は小さかった。
- 亜鉛/炭酸ナトリウム混合リン酸塩単独系のE_{sp}は, -0.4V vs. SSE以下の値を示した。
- 亜鉛/炭酸ナトリウム混合リン酸塩への五ホウ酸ナトリウム添加に伴い, E_{sp}が高くなる傾向が認められた。
- 五ホウ酸ナトリウム単独・複合添加系では線量率の増加に伴いEspが高くなる傾向が認められた。
- E_{sp}とE_{R.CREV}との比較により局部腐食発生可能性を評価した。

- 10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価
 - ●腐食すきま再不働態化電位(E_{R.CREV})測定結果(その1) 測定例:東芝分
- ・試験溶液:1000倍希釈人工海水
- ・防錆剤種類:タングステン酸ナトリウム
- •防錆剤濃度:5000 ppm
- ・五ホウ酸ナトリウム濃度:1000 ppm as B
 ・線量率:4.0 kGv/h

図33 照射環境下におけるE_{R,CREV}の測定例

● STEP3において電流が増加しなくなる最も高い(貴な)電位をE_{R, CREV}として評価した。

IRID
- (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価

●腐食すきま再不動態化電位(E_{R,CREV})(その2)(1)不働態化挙動の発現確認:日立GE分

試験溶液:1000倍希釈人工海水 防錆剤:亜鉛/炭酸ナトリウム混合リン酸塩(ZSCMP)800 ppm, pH=7.3 線量率:0.0 kGy/h(非照射)

図34 非照射環境下におけるE_{R.CREV}の測定例

- アノード分極(STEP1)条件において,防錆剤の種類により電流停滞領域(不働態域)が発現する場合(左図)と 発現しない場合(右図)とを確認した。
- 不働態域が発現しなかった測定では、不働態化しなかったと評価し、E_{R,CREV}の評価対象外とした。 (例:亜鉛/炭酸ナトリウム混合リン酸塩 800ppm)。
- 亜鉛/炭酸ナトリウム混合リン酸塩においては、炭素鋼上に沈殿皮膜が形成し防錆効果を発現するため、不働 態化に伴う局部腐食は発生しないと考えられる。

10. 平成28年度事業成果
 (1)腐食抑制策の効果・影響の評価
 ①電気化学測定による防錆剤の耐局部腐食性の評価

●腐食すきま再不動態化電位(E_{R.CREV})測定結果(その2)(2)測定例:日立GE分

図35 照射環境下におけるE_{R.CREV}の測定例

● STEP3において電流が増加しなくなる最も高い(貴な)電位をE_{R, CREV}として評価した。

10. 平成28年度事業成果
 (1)腐食抑制策の効果・影響の評価
 ①電気化学測定による防錆剤の耐局部腐食性の評価
 ●腐食すきま再不働態化電位(E_{R. CREV})測定結果まとめ(その1):東芝分

図36 腐食すきま再不働態化電位測定結果まとめ

- 亜鉛/モリブデン酸ナトリウム混合リン酸塩は、単独添加での非照射および0.2 kGy/h(予備照射なし)では 高いE_{R, CREV}を示した。しかし、高線量での予備照射および高線量下での測定(予備照射無)もしくは五ホウ 酸ナトリウムとの複合添加によりE_{R, CREV}が低下した。
- タングステン酸ナトリウムは五ホウ酸ナトリウムとの複合添加により,非照射および照射のいずれの環境下に おいても高いE_{R. CREV}を示した。

(1)腐食抑制策の効果・影響の評価
 ①電気化学測定による防錆剤の耐局部腐食性評価
 ●腐食すきま再不動態化電位(E_{R.CRFV})測定結果まとめ(その2):日立GE分

図37 腐食すきま再不働態化電位(E_{R.CREV})の測定結果まとめ

- 五ホウ酸ナトリウム 4000ppm as B条件のE_{R.CREV}は, 0.6V以上の値を示した。
- 五ホウ酸ナトリウム 1000ppm as B以下, もしくは, 五ホウ酸ナトリウム 1000ppm as Bに亜鉛/炭酸ナトリウム 混合リン酸塩(ZSCMP) 800ppmを複合添加した条件では, 0.0V以下の値を示した。
- 五ホウ酸ナトリウム+ZSCMP複合系では線量率の増加に伴いE_{R.CREV}が高くなる傾向が認められた。

10. 平成28年度事業成果

- (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価

●局部腐食の発生評価結果(その1):東芝分

図38 局部腐食発生評価結果(亜鉛/モリブデン酸ナトリウム混合リン酸塩)

- 亜鉛/モリブデン酸ナトリウム混合リン酸塩は、防錆剤単独添加条件での非照射および0.2 kGy/h(予備照 射無)において局部腐食発生の可能性がないことが分かった。
- 一方,予備照射および高線量下での測定(予備照射無)もしくは五ホウ酸ナトリウムにより局部腐食発生の可能性があることが分かった。局部腐食の発生可能性ありとなった条件では、試験後の溶液pHが11以下に低下していたことから、pHを11以上に保つことで局部腐食が発生しなくなる可能性があると考えられる。

IRID

10. 平成28年度事業成果

- (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価

●局部腐食の発生評価結果(その1):東芝分

図39 局部腐食発生評価結果(タングステン酸ナトリウム)

● タングステン酸ナトリウムは5000 ppmの濃度で五ホウ酸ナトリウムと複合添加することにより、非照射および照射のいずれにおいても局部腐食発生の可能性がないことが分かった。

IRID

10. 平成28年度事業成果

- (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価

●局部腐食の発生評価結果(その2):日立GE分

図40 局部腐食発生評価結果(五ホウ酸ナトリウム単独添加)

- 五ホウ酸ナトリウム 4000ppm as B単独添加条件では, 非照射および照射条件のいずれにおいても局 部腐食発生の可能性がないことが分かった。
- 五ホウ酸ナトリウム 1000ppm as Bの単独添加, 非照射の条件では, 局部腐食発生する可能性がある ことが分かった。

- (1)腐食抑制策の効果・影響の評価
 - ①電気化学測定による防錆剤の耐局部腐食性の評価
 - ●局部腐食の発生評価結果(その2):日立GE分

図43 局部腐食発生評価結果(亜鉛/炭酸ナトリウム混合リン酸塩(ZSCMP))

● 五ホウ酸ナトリウムとZSCMPの複合添加条件では,非照射および照射条件のいずれにおいても局部 腐食発生の可能性があることが分かった。

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価

①電気化学測定による防錆剤の耐局部腐食性の評価

●定電位すきま腐食試験結果(その1) 測定例:東芝分

図42 照射環境下における定電位すき間腐食試験の測定例

● 定電位保持時(STEP3)の電流の経時変化において、電流が不働態維持電流(<10 µA)程度に減衰した場合は進展性なし(左図)、電流が不働態維持電流以上で定常になった場合は進展性あり(右図)と評価した。

IRID

10. 平成28年度事業成果

(1)腐食抑制策の効果・影響の評価

①電気化学測定による防錆剤の耐局部腐食性の評価

●定電位すきま腐試験結果(その2)測定例:日立GE分

試験溶液:1000倍希釈入上海水 防錆剤:五ホウ酸ナトリウム4000 ppm as B, pH=8.2 線量率:4.0 kGy/h 設定電位:0.2 V vs. SSE(E_{sp}相当) 試験溶液:1000倍希釈人工海水 防錆剤:五ホウ酸ナトリウム 1000 ppm as B + 亜鉛炭酸ナトリウム混合リン酸塩800ppm, pH=8.5 線量率:4.0 kGy/h 設定電位:0.1 V vs. SSE(Esp相当)

図43 照射環境下における定電位すき間腐食試験の測定例

● 定電位保持(STEP 3)条件での電流の経時変化において, 電流が不働態維持電流(<10µA)以下に減衰す る条件では, 進展性なし(左図), 電流が不働態維持電流以上を維持する条件では, 進展性あり(右図)と評 価した。

(1)腐食抑制策の効果・影響の評価
 ①電気化学測定による防錆剤の耐局部腐食性の評価

●局部腐食の進展評価結果(その1):東芝分

(a) 亜鉛/モリブデン酸ナトリウム混合リン酸塩 (b) : 図44 局部腐食進展評価結果

> タングステン酸ナトリウム

- 亜鉛/モリブデン酸ナトリウム混合リン酸塩は、防錆剤単独添加および五ホウ酸ナトリウム40 ppm as Bとの複合添加条件、照射下E_{sp}相当の電位において局部腐食の進展性がなかった。五ホウ酸ナトリウムの添加濃度の増加に伴い、局部腐食の進展性が発現した。
- タングステン酸ナトリウム5000 ppmに五ホウ酸ナトリウムを複合添加することにより、非照射および照射のいずれにおいても照射下ESP相当の電位で局部腐食の進展性がなかった。

(1)腐食抑制策の効果・影響の評価 ①電気化学測定による防錆剤の耐局部腐食性の評価 ●まとめ

		【丁海水类	耐局部腐食性 五ホウ酸ナトリウムとの複合 発生評価 進展性 の複合 〇:発生可能性なし 〇:発生可能性なり ※:発生可能性あり ※:発生可能性あり			
防錆剤種類 五ホウ酸ナトリウム タングステン酸 ナトリウム = 新公 一炭酸ナトリウム混合 リン酸塩	防錆剤 濃度	ハエ海ホ帯 釈倍率 (CI−濃度)	五ホウ酸ナトリウムと の複合	発生評価 〇;発生可能性なし ×:発生可能性あり	進展性 〇:発生可能性なし ×:発生可能性あり	
五ホウ酸ナトリウム	4000 ppm as B	1000 倍 (19 ppm)	-	0	0	
タングステン酸 ナトリウム	5000 ppm	1000 倍 (19 ppm)	複合添加 (>40 ppm as B)	0	0	
	4000 ppm	1000 倍 (19 ppm)	単独添加	対象外*	対象外※	
亜鉛/炭酸ナトリウム混合 リン酸塩	800 ppm	1000 倍 (19 ppm)	複合添加 (<40 ppm as B)	対象外*	対象外※	
	800 ppm	1000 倍 (19 ppm)	複合添加 (>400 ppm as B)	×	×	
亜鉛/モリブデン酸	5000 ppm	1000 倍 (19 ppm)	単独添加	O**	O***	
ナトリウム混合リン酸塩	リウム混合リン酸塩 5000 1000倍 ppm (19 ppm)) (複合添加 (>400 ppm as B)	×	×		

注1:沈殿皮膜型防錆剤であり不働態化しないため、評価対象外、注2:低線量率(0.2 kGy/h)において発生可能性なし 注3:非照射において進展可能性なし

(1)腐食抑制策の効果・影響の評価

①電気化学測定による防錆剤の耐局部腐食性の評価

●まとめ

【五ホウ酸ナトリウム】

五ホウ酸ナトリウム単独添加条件において, 添加濃度1000 ppm as Bでは局部腐食の発生 可能性あったが, 4000 ppm as Bでは照射, 非照射いずれの環境下でも局部腐食の発生可 能性がなく, 高い耐局部腐食性を示すことが分かった。

【 亜鉛/モリブデン酸ナトリウム混合リン酸塩 】

亜鉛/モリブデン酸ナトリウム混合リン酸塩では、単独添加の非照射もしくは0.2 kGy/hにおいて高い耐局部腐食性を示すことが分かった。一方、五ホウ酸ナトリウムとの複合添加もしくは4.0 kGy/hの照射により耐局部腐食性が低下することが分かった。試験後の溶液分析の結果、耐局部腐食性の低下はpHの低下に起因している可能性があることから、pHの低下を抑制することで高耐局部腐食性を維持できることも考えられる。

【亜鉛/炭酸ナトリウム混合リン酸塩】

沈殿皮膜型防錆剤の一種である亜鉛/炭酸ナトリウム混合リン酸塩は,単独添加もしくは40 ppm as Bの五ホウ酸ナトリウムとの複合添加では不働態化しないことから,局部腐食発生可 能性の評価対象外とした。400 ppm as B以上の五ホウ酸ナトリウムと複合添加した亜鉛/ 炭酸ナトリウム混合リン酸塩は,五ホウ酸ナトリウムの作用により不働態化し,局部腐食の発 生可能性があることが分かった。

【タングステン酸ナトリウム】

五ホウ酸ナトリウムとの複合添加により、照射および非照射いずれの環境下においても局部腐 食の発生可能性および進展性がなく、高い耐局部腐食性を示すことが分かった。

- (1)腐食抑制策の効果・影響の評価
 - **②リン酸塩系防錆剤の高温部での固着影響評価**

●リン酸塩系防錆剤 バッチ試験

<u>目的</u>:

所定の高温度における防錆剤成分の固着影響の有無を 評価する。

<u>試験方法</u>:

- 1) 希釈人工海水を入れた耐熱瓶に防錆剤を添加し,所定 濃度に調製する。
- 2) 密閉し振とう後,所定の高温度に保持した恒温槽に静置する。
- 3) 24時間保持後に耐熱瓶を取り出し、上澄水をフィルターにてろ過する。
- 4) ろ過物および試験溶液の成分分析を行う。

図45 バッチ試験イメージ

防錆剤	塩化物イオン濃度 (ppm)	防錆剤濃度 (ppm)	温度 (℃)	試験時間 (時間)
亜鉛/モリブデン ナトリウム混合リン酸 亜鉛/炭酸ナトリウム混合	と 国 ^{注1} ノン酸塩 19(1000倍希釈人工海水) 1.9(10000倍希釈人工海水)	400~ 5000	50 65 80	24

表2 概略試験マトリックス

注1 通常の防錆剤に加え、照射後の溶液の成分分析結果を考慮し、有機リン化合物からオルトリン酸への置換率が50%の防錆剤も使用

(1)腐食抑制策の効果・影響の評価
 ②リン酸塩系防錆剤の高温部での固着影響評価

●亜鉛/モリブデン酸ナトリウム混合リン酸塩 バッチ試験:東芝分 <u>試験結果</u>:

・試験後の試験溶液中に沈殿物は認められなかった。

・試験溶液の上澄水をフィルターにてろ過したろ過水の成分濃度測定の結果,防錆剤の主要成分(P, Zn, Mo)の濃度は,試験前後で変化は認められなかった。

・pH, その他の分析対象成分の分析の結果, 試験前後で変化は認められなかった。

・フィルターろ過物の定性分析の結果,防錆剤の主要 成分のうち,ZnおよびMoは検出されず,Pもほぼ全て の試験条件において検出されなかった。

(耐熱瓶外観)

(耐熱瓶底部)

図46 バッチ試験後外観観察(例) 亜鉛/モリブデン酸ナトリウム混合リン酸塩 3000ppm (1000倍希釈海水, 50℃)

バッチ試験の結果, 亜鉛/モリブデン酸ナトリウム混合リン酸塩は白色生成物などの発生はなく, 高温での固着影響は認められなかった。

IRID

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価 ②リン酸塩系防錆剤の高温部での固着影響評価 ●亜鉛/炭酸ナトリウム混合リン酸塩(ZSCMP)バッチ試験結果:日立GE分

- ZSCMP 4000ppm, 65℃/80℃に24h高温保持することにより白濁確認。
- ・白濁物質の成分元素として防錆剤主成分であるZnおよびPを検出。

(1)腐食抑制策の効果・影響の評価

②リン酸塩系防錆剤の高温部での固着影響評価

●リン酸塩系防錆剤 通水試験

<u>目的</u>:

防錆剤を含む試験溶液が高温部に接触した場合の防錆剤成分の析出量を評価する。

<u>試験方法</u>:

IRID

- 1) 希釈人工海水と防錆剤を混合し所定の濃度の試 験溶液を調製する。
- 2) 熱負荷部分(テストチューブ)の内部に温水,外部 に試験溶液を冷却水として通水し,所定の試験温 度および流速で温水,冷却水を循環させる。
- 3) 所定の時間後, テストチューブ表面の付着物量を 評価する。
- 4) 試験溶液の一部をフィルターにてろ過し、ろ過水 に対して成分濃度分析を行う。

図47

表3 概略試験マトリックス

防錆剤	<mark>塩化物イオン濃度</mark> (ppm)	防錆剤濃度 (ppm)	温度 (℃)	流速 (m/s)	試験時間 (時間)
亜鉛/モリブデン酸 ナトリウム混合リン酸塩 ^{注1} 亜鉛/炭酸ナトリウム混合リン酸塩	19(1000倍希釈人工海水) 1.9(10000倍希釈人工海水)	400~ 5000	65	0.02 ~ 0.50	168 720 (一部)
注1 通常の防錆剤に加え,照射後の溶液	の成分分析結果を考慮し、有機リン化名	言物からオルトリン	酸への置換	奥率が50%の	の防錆剤も使用

試験装置構成例

(1)腐食抑制策の効果・影響の評価

②リン酸塩系防錆剤の高温部での固着影響評価

●亜鉛/モリブデン酸ナトリウム混合リン酸塩 通水試験:東芝分 試験結果:

・試験後のテストチューブの接液部に付着物は認められなかった。

・試験溶液の一部をフィルターにてろ過したろ過水の成分濃度測定の結果,防錆剤の主要成分(P, Zn, Mo)の濃度は,試験前後で顕著な変化は認められなかった。

・pH, その他の分析対象成分の分析の結果, 試験 前後で変化は認められなかった。

・フィルターろ過物の定性分析の結果,防錆剤の主 要成分(P, Zn, Mo)は検出されなかった。

(試験開始前)

(試験終了後)

図48 通水試験テストチューブ外観観察(例) 亜鉛/モリブデン酸ナトリウム混合リン酸塩 3000ppm (1000倍希釈海水, 65℃, 流速0.03m/s)

通水試験の結果, 亜鉛/モリブデン酸ナトリウム混合リン酸塩は白色生成物などの付着はなく, 高温での固着影響は認められなかった。

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価 ②リン酸塩系防錆剤の高温部での固着影響評価 ●亜鉛/炭酸ナトリウム混合リン酸塩(ZSCMP)通水試験結果(1):日立GE分

通水試験前

通水試験後

乾燥後

図49 管肉温度65℃,168h通水試験前後の伝熱管の外観写真(例) ZSCMP 4000 ppm, 流速0.02 m・s⁻¹

 試験中は明確なスケールの付着は確認できなかったが、伝熱部乾燥後に 白色スケールの付着を確認。

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価 ②リン酸塩系防錆剤の高温部での固着影響評価 ●亜鉛/炭酸ナトリウム混合リン酸塩(ZSCMP)通水試験結果(2):日立GE分

図50 管肉温度65℃, 168h通水試験後の伝熱管の外観写真

- ZSCMP 4000ppm, 65℃に168h通水試験により白色スケール確認。
- ・低流速条件の方がスケール量が多い傾向。
- ・スケール成分と溶液分析結果はバッチ試験と同様の傾向。

- (1)腐食抑制策の効果・影響の評価
 - ②リン酸塩系防錆剤の高温部での固着影響評価

●リン酸塩系防錆剤に対する滅菌剤の影響評価試験

<u>目的</u>:

防錆剤と滅菌剤を複合添加した場合に炭素鋼の腐食に及ぼす影響を評価する。

<u>試験方法</u>:

- 1) 希釈人工海水に防錆剤および滅菌剤を所定濃度添加し, 試験溶液を作製する。
- 2) 試験片を試験容器に設置し, 試験温度に昇温後, 所定時間静置する。一部錆び付き試験片に対しても試験を行う。
- 3) 試験後, 試験片を試験容器から取出し, 外観観察を行う。 腐食生成物を除去した後に重量測定を行う。

図51 試験装置構成例

		** * * *			
防錆剤	<mark>塩化物イオン濃度</mark> (ppm)	防錆剤濃度 (ppm)	温度 (℃)	滅菌剤濃度 (ppm)	試験時間 (時間)
亜鉛/モリブデン酸 ナトリウム混合リン酸塩 ^{注1} 亜鉛/炭酸ナトリウム 混合リン酸塩 ^{注2}	19(1000倍希釈人工海水) 1.9(10000倍希釈人工海水)	3,000 4,000	50	50 500	500

表4 概略試験マトリックス

注1 有機窒素ハロゲン系滅菌剤を添加

注2 無機塩素系滅菌剤 を添加

(1)腐食抑制策の効果・影響の評価

②リン酸塩系防錆剤の高温部での固着影響評価

●亜鉛/モリブデン酸ナトリウム混合リン酸塩に対する滅菌剤の影響評価試験:東芝分 試験結果:

・防錆剤および滅菌剤を添加した溶液中の腐食試験の結果,試験前後で試験片表面は金属光沢を 呈し,腐食生成物の発生は認められなかった。

・錆び付き試験片による防錆剤および滅菌剤を添加した溶液中の腐食試験の結果,外観上の変化 はほぼ認められず,試験前後の腐食量も同程度であり,腐食の進行は認められなかった。

図52 防錆剤および滅菌剤添加溶液での腐食試験後外観観察(例)と腐食量評価結果 亜鉛/モリブデン酸ナトリウム混合リン酸塩3000 ppm, 滅菌剤500 ppm (1000倍希釈海水, 50℃)

炭素鋼の研磨面および腐食生成物に覆われた面いずれに対しても, 亜鉛/モリブデン酸ナトリウ ム混合リン酸塩と滅菌剤の併用による腐食抑制効果への影響は認められなかった。

IRID

10. 平成28年度事業成果
 (1)腐食抑制策の効果・影響の評価 ②リン酸塩系防錆剤の高温部での固着影響評価
 ●亜鉛/炭酸ナトリウム混合リン酸塩(ZSCMP)に対する滅菌剤影響評価:日立GE分

防錆剤および滅菌剤を途中添加した場合、無添加の場合と比較して腐食量が大きく低下した。(腐食生成物に覆われた炭素鋼に対しても腐食抑制効果を確認)

IRID

(1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価

1)試験要領の策定

4種類の防錆剤に対し、以下の観点で水処理設備(SARRY™,既設/増設/高性能多核種除去設備) への影響評価を行った。

・既存水処理設備への全体的な影響評価

平成27年度に防錆剤による影響が評価されていない機能について、影響有無を確認する。 ・防錆剤濃度に対する吸着性能への影響評価

防錆剤濃度が低下した場合の,吸着による核種除去機能への影響傾向を確認する。

・処理水中に防錆剤が含まれる場合の水処理システムの検討 防錆剤を含む液に対する核種除去.防錆剤成分除去を検討する。

図54 デブリ取出し時に想定される水処理システム

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価 2)影響評価結果 (その1):東芝分

<目的>SARRY[™], MRRS[™]の機能への防錆剤影響を評価する

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価 2)影響評価結果 (その1):東芝分 i)既存水処理設備への全体的な影響評価

●炭酸塩沈殿工程の吸着阻害成分除去性能への防錆剤濃度依存性評価

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価 2)影響評価結果 (その1):東芝分 i)既存水処理設備への全体的な影響評価

●炭酸塩沈殿工程のコバルト除去性能への防錆剤影響評価

防錆剤	添加濃度 (ppm)	コバルト除去 性能への影響
A タングステン酸ナトリウム	3,000	0
B 亜鉛/モリブデン酸ナトリウム混合リン酸塩	7,000	0
C 五ホウ酸ナトリウム	10,000 (as B)	0
D 亜鉛/炭酸ナトリウム混合リン酸塩	800	0

○:影響はほとんどない △:防錆剤濃度1/10でも影響あり

©International Research Institute for Nuclear Decommissioning

600

800

▲ ブランク 40g/L

-■-- ブランク 70g/L

→ ブランク 100g/L

── 防錆剤D 70g/L

防錆剤D 100g/L

1000

1200

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価 2)影響評価結果 (その1):東芝分 i)既存水処理設備への全体的な影響評価

●薬液使用量への影響評価

		添加濃度	复(ppm)	薬液使用量	
	的項目	1倍	1/10倍	への影響	
Α	タングステン酸ナトリウム	3,000	300	0	
В	亜鉛/モリブデン酸ナトリウム混合リン酸塩	7,000	700	Δ	
С	五ホウ酸ナトリウム	10,000	1,000	×	
D	亜鉛/炭酸ナトリウム混合リン酸塩	800	80	0	

○:影響はほとんどない

△:防錆剤濃度1/10でも軽微な影響あり

×:防錆剤濃度1/10でも影響が大きい

RID

[©]International Research Institute for Nuclear Decommissioning

c/co(ヨウ素吸着性能)

10. 平成28年度事業成果 ③水処理設備への影響評価 (1)腐食抑制策の効果・影響の評価 2)影響評価結果(その1):東芝分 iii)処理水中に防錆剤が含まれる場合の水処理システムの検討 ●ホウ素溶液中からストロンチウムを除去するための吸着材選定 小循環ループ中のホウ素を含む溶液からストロンチウムを除去するための吸着材 をバッチ試験によりスクリーニング評価した。 評価対象 ホウ素濃度条件 腐食抑制 臨界管理 ホウ素なし 吸着材 ホウ素あり 1.000 Sr吸着 システム システム Cs/Sr用(FST) 無機系1 c/c。(ストロンチウム吸着性能) 6000ppm 無機系2(微粉末) 臨界 0 ppm 腐食 (as B) 0.100 無機系3 防止剤 抑制剤 無機系4 比較的Sr吸着性能が高い 0.010 循環注水 冷却システム 核種除去 0.001 FST FST 無機系1 無機系1 無機系2 無機系2 無機系3 無機系3 無機系4 無機系4 システム (微粉末) +防錆剤C +防錆剤C +防錆剤C +防錆剤C (微粉末) +防錆剤C 小循環ルー

C :浸漬後濃度 1.2 ホウ素設定濃度に対する比率[-] ■吸着試験前 Co:浸漬前濃度 1.0 ■吸着試験後 0.8 吸着試験後に約20%のホウ素 0.6 濃度低下を確認 0.4 → pH変化や海水成分影響が 考えられる。カラム通水での 0.2 減少率について確認要。 0.0 無機系2 無機系3 無機系4 FST 無機系1

ホウ素影響が小さく、かつ比較的ス トロンチウム吸着性能の高い吸着材 候補として、FSTおよび<mark>無機系吸</mark> 着材1を選定。

IRID

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 2)影響評価結果 (その1):東芝分
 - iv)実機適用に向けた課題

水処理設備にて高濃度の防錆剤を含む溶液を処理する場合,吸着材交換頻度の増 大,防錆剤成分由来の沈殿物生成,薬液使用量増加による廃棄物発生量の増加が 懸念される。そのため,事前に防錆剤成分濃度を低減させることで,実機適用が可能 となる

		廃棄物発生 :	廃棄物発生量への影響					
廃棄物発生量が	防錆剤A	防錆剤B	防錆剤C	防錆剤D				
増加する項目	タングステン酸 ナトリウム	亜鉛/モリブデン酸ナ トリウム混合リン酸塩	五ホウ酸 ナトリウム	亜鉛/炭酸ナトリウム 混合リン酸塩				
Sr吸着材	_							
アンチモン 吸着材① ^{注1}		_		—				
アンチモン 吸着材② ^{注2}		—	•	—				
鉄系吸着材 ^{注3}		_		—				
防錆剤成分 由来の沈殿								
薬液使用量			•					

凡例) ●:廃棄物発生量が大幅に増加する可能性がある

▲:廃棄物発生量が増加する可能性がある

--:廃棄物発生量はほとんど増加しない

注1:アンチモン除去用吸着材 注2:ヨウ素酸除去用吸着材 注3:コバルト等の除去用吸着材

(1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価

2)影響評価結果 (その1):東芝分

v)まとめ

水処理設備にて高濃度の防錆剤を含む溶液を処理する場合,4種類いずれの防錆剤 についても機能影響がある。そのため,事前に防錆剤成分濃度を低減させることで, 実機適用が可能となる。

SARRYTM・MRRSTMへの防錆剤影響評価結果

防錆剤			SARRY™	MRRS™						
		腐食抑制用 防结剂濃度	吸着		前処理+吸着				pH調整	
		(ppm)	ストロン チウム	ストロン チウム	アンチ モン	ヨウ素	コバルト	NaOH 使用量	塩酸 使用量	
Α	タングステン酸 ナトリウム	1,500	Ø	O	0	0	Δ	O	O	
В	亜鉛/モリブデン酸ナト リウム混合リン酸塩	3,500	Ø	Δ	O	0	O	O	Δ	
С	五ホウ酸ナトリウム	6,000 (as B)	Ø	Δ	0	0	Δ	Δ	Δ	
D	亜鉛/炭酸ナトリウム 混合リン酸塩	400	Ø	Δ	O	O	O	O	Ø	

凡例) ◎:防錆剤濃度がPCV水添加濃度でも機能影響はほとんどない

○:防錆剤濃度がPCV水添加濃度の1/10~1/100で機能影響はほとんどなくなる

△:防錆剤濃度がPCV水添加濃度の1/10~1/100でも機能影響が見られる

地下水による希釈、事前除去等にて濃度低下させることで機能影響はなくなる

(1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価

3)影響評価結果 (その2):日立GE分

H27年度の成果では、高性能多核種除去設備(HERO)の核種吸着性能に対して防錆剤は影響 を与えると評価した。H28年度は、確認された核種吸着性能の課題に対して検討した。

(1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価

3)影響評価結果 (その2):日立GE分

H28年度の評価項目を表5に示す。

表5 平成28年度の防錆剤の水処理設備への影響評価項目

No.	評価項目	評価内容
1	既存水処理設備への 全体影響評価	 (1) 昨年度評価していなかった吸着材(重金属吸着材, Ru吸着材)の核種吸着性能への影響確認 (2) HEROで使用する吸着材を連結した通水試験による核種 吸着性能への複合影響確認
2	防錆剤濃度に対する 吸着性能への影響評価	(1) 実態を考慮した防錆剤濃度 ^{注1} による吸着材の吸着性能への影響確認 (2) 実態を考慮した防錆剤濃度 ^{注1} によるpH調整に必要な試薬量への影響確認
3	処理水中に防錆剤が 含まれる場合の水処理 システムの検討	(1) 大循環ループでの五ホウ酸ナトリウムの処理についての検討 (2) 小循環ループでの五ホウ酸ナトリウムの処理について検討

注1:表6参照のこと。

表6 各防錆剤の濃度条件

		濃度 (ppm)					
R方 全書 客川		冬卅 1	実態を考慮した濃度				
ניא מצ נא		「★11」 (単27年度と同じ)	条件2	条件3			
		(112/ 牛皮と向し)	(条件1の1/10)	(条件1の1/100)			
Α	タングステン酸ナトリウム	3000	300	30			
В	亜鉛/モリブデン酸ナトリウム混合リン酸塩	7000	700	70			
С	五ホウ酸ナトリウム	10000 ^{注2}	1000 ^{注2}	100 ^{注2}			
D	亜鉛/炭酸ナトリウム混合リン酸塩	800	80	8			

注2:ホウ素B濃度換算。

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果 (その2):日立GE分
 - -事前確認- 試験水の作製(析出物の生成確認)

試験で使用する模擬水(試験水=各防錆剤を添加した希釈海水)を目視確認し,析出物が確認された試験水については昨年度と同様にその上澄み水を試験に使用することにした。

⇒防錆剤AおよびBを添加した10倍希釈海水では,防錆剤濃度が表6の条件2までは析出物が 生成する可能性がある。また、Srはその析出物とともに共存している。

(防錆剤濃度が表6の条件3以下または100倍希釈海水では析出物は確認されなかった。また, Sr以外の核種の析出はほとんど確認されなかった。)

						/ =	
種類	名称		A	B	C	D	
А	タングステン酸ナトリウム		The second second				!
в	亜鉛/モリブデン酸ナトリウム混合リン酸塩						l
с	五ホウ酸ナトリウム						I
D	亜鉛/炭酸ナトリウム混合リン酸塩					\rightarrow	Ľ
		防錆剤なし	白濁している。				

各防錆剤を添加した試験水中のSr析出割合

防錆剤	作製水中のSr析出割合(%)						
種類	表6の条件1	表6の条件2					
Α	<u>96</u>	<u>4</u> <u>2</u>					
В	<u>35</u>						
С	0	1 注1					
D	<u>15</u>	0					

防錆剤濃度:素6の冬仕1 (10倍差釈海水)

IRID

注1:昨年度の評価(条件1の結果)ではSrの析出は見られなかったため、分析時の誤 差と判断して本年度の試験(条件2の結果)でもSrの析出は見られないと判断した。 ©International Research Institute for Nuclear Decommissioning

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果 (その2):日立GE分
 - i) 既存水処理設備への全体的な影響評価(1/2)
 - (1) 未評価核種吸着性能への影響評価

昨年度評価していなかった吸着材(重金属吸着材およびRu吸着材)の核種(CoおよびRu)吸着性能への影響 を確認した。図58に防錆剤による各吸着材の核種吸着性能への影響を示す。

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果(その2):日立GE分
 - i) 既存水処理設備への全体的な影響評価(2/2)
 - (2) 核種吸着性能に対する複合影響評価

各防錆剤を添加した試験水を用いたHEROで使用する複数の吸着材の連結カラム試験を実施し,防錆剤による核種吸着性能への影響を確認した。表7に防錆剤による核種吸着性能への複合影響(各防錆剤を添加した試験水ごとの通水30日目の核種吸着性能C/CO)を示す。

⇒いずれの防錆剤も核種吸着性能に影響を与える。

表7 防錆剤による核種吸着性能への複合影響(各防錆剤を添加した試験水を用いた連結カラム試験結果)

核種		通	====			
	防錆剤なし	防錆剤A	防錆剤B	防錆剤C	防錆剤D	а т 1ш
Sr	0.034	0.260	0.053	0.360	1.000	防錆剤B以外は影響を与える。
Cs	0.001	0.001	0.001	0.001	0.001	影響なし。
Sb	0.003	0.560	0.660	0.067	0.130	いずれの防錆剤も影響を与える。
ヨウ素	0.320	0.260	0.240	0.350	0.410	影響なし。
Co	0.099	0.069	0.081	0.500	1.000	防錆剤Cおよび防錆剤Dは影響を与える。
Ru	0.003	0.110	0.017	0.005	0.010	防錆剤Aおよび防錆剤Bは影響を与える。

C0: 通水前の試験水中の核種濃度

C:通水後のカラム出口水中の核種濃度

赤字:防錆剤添加なしの場合のC/COよりも一桁以上高い値(核種吸着性能の低下)を示す。

٥.
1

 種類
 名称

 A
 タングステン酸ナトリウム

 B
 亜鉛/モリブデン酸ナトリウム混合リン酸塩

 C
 五ホウ酸ナトリウム

 D
 亜鉛/炭酸ナトリウム混合リン酸塩

試験水のCl濃度:1900ppm (10倍希釈海水) 試験水の防錆剤濃度:表6の条件2 通水期間:30日 (SV15:実機と同じ)

©International Research Institute for Nuclear Decommissioning

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果(その2):日立GE分
 - ii) 防錆剤濃度による核種吸着性能への影響評価(2/4)
 - (2) カラム試験による影響評価

IMN ~/ 〒/ ごう 試験水の防錆剤濃度:表6の条件2,条件3 (参考として条件1の結果を記載する。) 、の影響を評価した、表8に、カラム試験結果として通水30

カラム試験により防錆剤濃度ごとの核種吸着性能への影響を評価した。表8に、カラム試験結果として通水30 日目(または10日目)のCsおよびSrのC/C0を示す。

(今回は、代表としてCs・Sr同時吸着材のカラム試験を実施した。)

⇒防錆剤Bは、その濃度が条件2(防錆剤混合率0.1)以下になれば影響が低減する。 防錆剤CおよびDは、その濃度が条件3(防錆剤混合率0.01)以下になれば影響が低減する。

表8 防錆剤によるCsおよびSrの吸着性能への影響(各防錆剤を添加した試験水を用いた連結カラム試験結果)

防錆剤	拉话		通水30日目の				
濃度	作文作里	防錆剤なし	防錆剤A	防錆剤B	防錆剤C	防錆剤D	
まのの	Ś	1.000	0 100	1 000	1.000	1.000	<cs吸着性能について></cs吸着性能について>
条件1	0	(0.100)	0.100	1.000	(0.69)	(0.72)	防錆剤Bは、その濃度が条件2以下に
	Cs	0.001-0.100	0.001	1.000	0.001	0.001	なれば、防錆剤なしのC/C0と同等。
±00	Sr	—	0.410	0.230	0.084	1.000	<sr吸着性能について></sr吸着性能について>
衣000 夕川 0			0.410		(0.25)	(0.77)	どの防錆剤も、通水30日目のC/C0は
余件2	Cs	—	0.001	0.037	0.001	0.005	防錆剤なしのC/COと同等。
表6の	Sr		1.000	1.000	0.069	1.000	7575し防靖剤UおよひDは, 余件3以下 にたれば通水10日日のC/C0が防铸剤
条件3	Cs		0.001	0.001	0.017	0.002	なしのC/C0と同等以下になる。

C0:通水前の試験水中の核種濃度

C:通水後のカラム出口水中の核種濃度

※Srについては、通水30日目のC/C0が防錆剤なしのC/C0(1.000)と同等でも、通水10日目のC/C0が防錆剤なしのC/C0(0.100)より大きな値であれば記載する。

赤字:防錆剤添加なしの場合のC/COよりも一桁以上高い値(核種吸着性能の低下)を示す。

	種類	名称
	А	タングステン酸ナトリウム
	в	亜鉛/モリブデン酸ナトリウム混合リン酸塩
亚儒	с	五ホウ酸ナトリウム
ртіщ	D	亜鉛/炭酸ナトリウム混合リン酸塩
<試験条件	>	

試験水のCl濃度:1900ppm(10倍希釈海水)

©International Research Institute for Nuclear Decommissioning

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果(その2):日立GE分
 - ii) 防錆剤濃度による核種吸着性能への影響評価(3/4)
 - (3) 核種吸着性能への影響まとめ
 - これまでの試験結果を基に、各防錆剤によるHEROで使用する吸着塔の核種吸着性能への影響 を吸着塔の交換頻度を考慮して整理した。表9に、整理表を示す。
 - ⇒表9に示すように、いずれの防錆剤も、その濃度を低減しないと核種吸着性能に影響を 与

<u>える。</u>

<u>特に、防錆剤Aは、その濃度を低減しても交換頻度が高い上位2種類の吸着塔(Ru吸着塔</u> およびCs・Sr同時吸着塔)の核種吸着性能に影響を与える。

			防錆剤							
	No.	吸着塔	防錆剤A	防錆剤B	防錆剤C	防錆剤D				
			タングステン酸ナトリウム	亜鉛/モリブデン酸ナトリウム混合リン酸塩	五ホウ酸ナトリウム	亜鉛/炭酸ナトリウム混合リン酸塩				
~ -	1	Ru吸着塔	Δ	Δ	0	0				
父換損 ↓ (2	Cs•Sr同時吸着塔	Δ	0	Δ	Δ				
	3	ヨウ素吸着塔	0	0	0	0				
	4	Sb吸着塔	Δ	Δ	Δ	Δ				
	5	重金属吸着塔	0	0	Δ	Δ				

表9 交換頻度を考慮した吸着塔の核種吸着性能へ影響

:交換頻度が高い吸着塔

O:防錆剤濃度を低減すれば影響がない。

△ :防錆剤濃度を低減しても影響がある。

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果(その2):日立GE分
 - ii) 防錆剤濃度による核種吸着性能への影響評価(4/4)
 - (2) pH調整に対する影響評価

異なる濃度の防錆剤を添加した10倍希釈海水による酸滴定試験を実施し, pH調整に必要な 試薬量への影響評価を行った。表10に各防錆剤の濃度ごとのpH3.5に調整するために必要な HCI量を示す。

⇒防錆剤C以外は、その濃度が条件3(防錆剤混合率0.1)以下になれば影響がほぼ無い。 防錆剤Cは、その濃度が条件3(防錆剤混合率0.1)以下になっても試薬量は防錆剤なしの ときより4倍必要になる。

No.		阳在全文	防錆剤濃度条件											
		りがずれが	(参考) 表6の条件1				表6の条件2				表6の条件3			
			р	Н	0.1mol/L	防錆剤	р	pН		0.1mol/L 防錆剤		ьΗ	0.1mol/L	防錆剤
	種類	名称	油宁前	油宁後	HCI	なしとの	海宁前	油宁後	HCI	なしとの	海宁前	油宁後	HCI	なしとの
			向た別	 周足1支	滴定量注1	比	向た別	间足该	滴定量 ^{注1}	比	响足刑	向 足夜	滴定量注1	比
1	-	なし	6.95	3.50	0.73	_	—	—	—	—	—	—	_	—
2	Α	タングステン酸ナトリウム	7.20	3.50	14.7	20.1	6.67	3.50	1.1	1.5	—	—	_	—
3	В	亜鉛/モリブデン酸 ナトリウム混合リン酸塩	11.85	3.50	23.8	32.5	11.05	3.50	3.0	4.0	—	_	_	_
4	С	五ホウ酸ナトリウム	7.45	3.50	176.0	241.1	8.32	3.50	20.8	28.5	8.25	3.50	2.7	3.7
5	D	亜鉛/炭酸ナトリウム 混合リン酸塩	6.90	3.50	2.05	2.8	6.88	3.50	0.64	0.9	_	_	_	

表10 防錆剤によるpH調整に必要な試薬量への影響(pH3.5に調整する酸滴定試験)

注1:廃液100ml換算:ml

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果(その2):日立GE分
 - iii) 実機適用に向けた課題抽出

実際に防錆剤を注入する際、HEROが正常運転するための課題を抽出した。

- (1) どの防錆剤も、HEROの核種吸着性能およびpH調整処理に影響を与える可能性があるため、 その濃度を低減できる防錆剤除去システムの検討は必要である。
- (2)水処理設備の性能に与える影響が最も大きかった防錆剤A以外の防錆剤に対し、水処理設備 への影響度合いをより比較するためには、<u>Ru, CsおよびSr以外の燃料デブリ取出し後に重要と</u> なる核種が明確になった時点でその核種を除去する吸着塔の性能影響有無を考慮することが 望ましい。
- (3) 五ホウ酸ナトリウムは、上記(イ)で検討する除去システムを導入してもHEROのHCI溶液注入量が 従来より増加する可能性があるため、HCI溶液注入ラインの増強についての検討が望まれる。
- (4) 防錆剤注入により析出物が発生する可能性があるため、この析出物による<u>フィルタのSSおよびコ</u> <u>ロイド成分除去性能影響について検討</u>する必要がある。

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果(その2):日立GE分
 - iv)処理水中に防錆剤が含まれる場合の水処理システムの検討
 - (1) 水処理設備に影響を与える防錆剤濃度の検討

いずれの防錆剤も,その濃度を表2の条件3以下に低減しなければHEROの核種吸着性能およびpH調整に 影響を与える可能性がある。

(2) ホウ素除去システム導入に対する課題

HEROを正常運転するため、ホウ素除去システムの必要性の検討の結果、必要であると評価したため、その導入に対する課題を抽出した。

- (1)ホウ素除去システムは, 五ホウ酸ナトリウムが水処理設備に影響を与えないために水処理設備の上流に 、 うなることが望ましい。
- (Ⅱ)燃料デブリ取り出し時にも現状と同様、トーラス室への地下水流入が継続すると想定される。そのため、 トーラス室から地下水を取水し、水処理設備に移送することになる。このことからトーラス室から取水される 地下水が水処理設備に移送される前に水処理設備の上流にホウ素除去システムを導入することが望ましい。
 (Ⅲ)導入したシステムでホウ素を除去した後、汚染水の水質が変化している可能性があるため、システムの下流 側の水処理設備への影響確認が必要である。
- (Ⅳ)ホウ素除去システムの下流にサンプリングラインを設け、水処理設備の性能低下抑制のためのホウ素濃度 管理が重要となる。
- (3) PCV循環ループに対する課題
 - PCV循環ループの線量低減のために核種除去システムが必要になった場合,いずれの防錆剤も既存技術での 核種除去性能に影響を与えるため,その影響を考慮した核種除去システムを検討する必要がある。

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 - 3)影響評価結果 (その2):日立GE分
 - v)高性能多核種除去設備への影響評価

これまでの評価結果をまとめたものを表11に示す。

表11 防錆剤による高性能多核種除去設備への影響

				防錆剤種	類		
No.		確認項目	防錆剤A: タングステン酸ナトリウム	防錆剤B: 亜鉛/モリブデン酸 ナトリウム混合リン酸塩	防錆剤C: 五ホウ酸ナトリウム	防錆剤D: 亜鉛/炭酸ナトリウム 混合リン酸塩	
1	核	Cs・Sr同時吸着材の Cs吸着性能	0	Δ	0	0	
2	種吸	Cs・Sr同時吸着材の Sr吸着性能	Δ	Δ	Δ	Δ	
3	着性	Sb吸着材の Sb吸着性能	Δ	Δ	Δ	Δ	
4	能へ	ヨウ素吸着材の ヨウ素吸着性能	0	0	0	0	
5	の 重金属吸着材の 影 Co吸着性能		0	0	Δ	Δ	
6	響	Ru 吸着材の Ru 吸着性能	Δ	Δ	0	0	
7	酸調整への影響 ^{注1}		0	0	Δ	O	
8	析出物の発生有無 (フィルタへの影響)		Δ	Δ	Ø	0	

◎:防錆剤濃度が表2の条件1でも影響がない。

○:防錆剤濃度を表2の条件2(条件1の10分の1)以下に低減しなければ実機運転に影響を与える可能性がある。

△:防錆剤濃度を表2の条件3(条件1の100分の1)以下に低減しなければ実機運転に影響を与える可能性がある。

注1:防錆剤なしの試験水をpH3.5に調整するために必要なHCl溶液添加量の10倍以上である場合は実機運転に影響を与える可能性があるとして評

©International Research Institute for Nuclear Decommissioning

- (1)腐食抑制策の効果・影響の評価 ③水処理設備への影響評価
 4)影響評価結果まとめ
 - 4種類の防錆剤ともに水処理設備の機能への影響があることを確認した。
 - 水処理設備にて高濃度の防錆剤を含む液を処理する場合には、事前に濃度低減させることで実機へ適用可能となる。
 - 防錆剤の事前除去要否, 必要濃度低減率等については, デブリ取出しPJ, PCV止水PJ等 の検討結果を踏まえて総合的な検討が必要となる。

防錆剤		腐食抑制用 防錆剤濃度 (ppm)	SARRY™	淡水化	既設/増設 多核種		高性能 多核種
			吸着工程	RO処理工程	前処理工程	吸着工程	吸着工程
A	タングステン酸ナトリウム	1,500	0	0	0	(\Delta)	Δ
В	亜鉛/モリブデン酸ナトリウム 混合リン酸塩	3,500	(O)	0	Δ	(\Delta)	Δ
С	五ホウ酸ナトリウム	6,000 (as B)	(O)	0	Δ	(\Delta)	Δ
D	亜鉛/炭酸ナトリウム 混合リン酸塩	400	(O)	0	Δ	(\Delta)	Δ

表12 水処理設備への影響評価結果

○:腐食抑制用防錆剤濃度にて影響はほとんどない

△:腐食抑制用防錆剤濃度の1/100にしなければ実機運転に影響を与える可能性あり

():バッチ試験による吸着評価結果。カラム試験による吸着評価結果は()なし表記

10. 平成28年度事業成果 (1)腐食抑制策の効果・影響の評価

④腐食抑制策(防錆剤)の選定結果

防錆剤		五本ウ酸	タンクロテン教	リン酸塩		
		ナトリウム	ナトリウム	亜鉛/炭酸ナトリウム 混合リン酸塩	亜鉛/モリブデン酸ナトリウム 混合リン酸塩	
防食皮膜 (メカニズム)		酸化皮膜型	酸化皮膜型	沈殿皮膜型	酸化皮膜 +沈殿皮膜型	
防錆効果	非照射	〇 ^{注1)}	▲ (斑点状の腐食)	0	0	
	照射	0	▲ (斑点状の腐食)	0	0	
	流水環境	〇注2)	▲ (斑点状の腐食)	0	0	
	錆び面	〇 ^{注1)}	▲ (腐食速度は低下するもの の停止はせず)	▲ (腐食速度は低下するものの停止はせず)	0	
	耐局部腐食性	0	-		<u>人</u> (4kGy/hの照射でE _{R.CREV} <e<sub>SPとなる)</e<sub>	
副次的影響	高温固着影響	_	-	▲ (65℃以上で白色生成物が発生)	0	
	五ホウ酸ナトリウ ムとの複合影響	_	〇 (五ホウ酸ナトリウムとの 併用により腐食が抑制)	×	×	
	水処理設備への	Δ	Δ	Δ	Δ	
機能影響 (希釈・除去等により,処理対象水中の防錆剤濃度がPCV内投入時よりも低下していることが必要)			いることが必要)			
総合評価 (7 用,		○ (再臨界防止剤としても適 用, B≧4000ppmが必要)	〇 (五ホウ酸ナトリウム との併用が必須)	○ (単独で使用。投入時に燃料デブリの表面温 度が50℃以下であることの確認が必要)	〇 (単独で使用。投入時にRPV/PCV内の 線量率の確認が必要。線量率によって はその適用性の確認が必要)	
- ○:条件付きで可 - ∧:懸念あり ×:厳しい 注1):東京雷力殿自社データ 注2):雷中研殿自社データ ⁸						

(2)腐食抑制システムの概念設計

①システム概念

●安全要求に基づきシステムの設置目的と機能要求を整理

⇒バウンダリへの防錆剤注入機能(腐食抑制機能)を有するシステムの設置が有効

(2)腐食抑制システムの概念設計

①システム概念

●燃料デブリ取り出し時の腐食抑制範囲,条件を策定

・材料腐食の進行が特に懸念されるのは液相部と接する範囲

・D/W, S/Cおよび循環ループの機器・配管を腐食抑制の対象範囲とする

10. 平成28年度事業成果 (2)腐食抑制システムの概念設計

①システム概念

●候補剤ごとの水質目標を設定

No.	防錆剤	目標濃度	管理基準	持込状態
1	タングステン酸ナトリウム	5000ppm以上	W:3200ppm以上	固体
2	亜鉛/炭酸ナトリウム 混合リン酸塩	4000ppm以上	Zn:200ppm以上 全リン酸:1000ppm以上	液体
3	亜鉛/モリブデン酸 ナトリウム混合リン酸塩	5000ppm以上	Mo:65ppm以上	液体
4	五ホウ酸ナトリウム 注1	4000ppm以上 (B濃度)	B:4000ppm以上	固体

注1 臨界管理プロジェクトにおける五ホウ酸ナトリウム管理濃度は6000~7000ppm

(2)腐食抑制システムの概念設計

①システム概念

●防錆剤の注入時期を設定

(i) 燃料デブリ取り出し作業開始前

PCV初期水張り

PCV保有水量は非常に大きく、PCV水位上昇後の防錆剤注入により必要な防錆剤濃度を確保す るのは、防錆剤注入量およびPCVからの排水量(水処理設備による処理量)が増加するため望ま しくない。従って、PCV補修後のPCV水位を上昇させる初期水張りの段階で、防錆剤入り処理水 を注入することを想定する。

・ RPVサンプリング期間中水質維持

「原子炉圧力容器内部調査技術の開発」の事業でRPV内燃料デブリのサンプリングが計画されて おり、PCV内負圧管理移行前に防錆剤の注入が要求される可能性がある。もしサンプリングを実 施する場合は、その実施期間中、防錆剤の注入を行うことを想定する。

(ii) 燃料デブリ取り出し作業期間中

燃料デブリ取り出し期間中,デブリ加工用水の流入やPCV保有水の排水等によりPCV内の防錆 剤濃度が低下すると考えられる。PCV保有水内の防錆剤濃度低下を検知した際に,腐食抑制シ ステムにより,防錆剤の注入を行うことを想定する。

- (2)腐食抑制システムの概念設計
 - ②腐食抑制システムの概念設計(その1:PCVの水漏洩無し)

循環冷却システムのバッファタンクに防錆剤を注入することでPCVに防錆剤を補給する

注1:PCV内の放射性物質が建屋外に拡散するリスクを減少させるため、専用の移送容器を介した防錆剤注入を行う

(2)腐食抑制システムの概念設計

②腐食抑制システムの概念設計(その1:PCVの水漏洩無し)

●設計方針

- 防錆剤注入ポンプの容量は、PCV初期水張り時にCST炉注水設備に注入する防 錆剤量に対して十分な量を供給できるよう設定する。
- 防錆剤調整槽の容量は、PCV初期水張り時にCST炉注水設備に注入する防錆剤 量に対して十分な量を供給できるよう設定する。
- 防錆剤移送容器は、1回の補給でPCVの防錆剤濃度を管理基準値まで上昇させることが可能な容量として設定する。
- 防錆剤の供給状態確認のため、防錆剤移送ライン上で流量、圧力を監視する。
- 防錆剤の調整のため、防錆剤調整槽は温度調整装置、撹拌装置、水位計を備えた設計とする。また、サンプリング等により調整槽の水質を確認可能な設計とする。
- 防錆剤の濃度監視のため、サンプリング等によりバウンダリ保有水の水質を確認可 能な設計とする。

(2)腐食抑制システムの概念設計

②腐食抑制システムの概念設計(その1:PCVの水漏洩無し)

●課題

項目	
補助設備用の配置スペース	循環冷却システムは放射性物質を閉じ込めるバウンダリの一部として, ポンプ, タンク等の機器をセル内に設置する方針である。 移送容器を介して防錆剤を注入するには揚重機等の遠隔操作用の補助設備 が必要であり, 配置スペースが増大することが懸念される。
モニタリング設備の導入	デブリ取り出し作業中,循環冷却システムの設置個所近傍は高線量環境であ ると考えられるため,バウンダリ保有水の水質を確認する場合は,作業員の被 ばく量低減が課題となる。 作業員の被ばく低減方法として遠隔監視可能なモニタリング設備の導入が考え られるが,現有技術をデブリ取り出し時の高線量環境下で適用できるか未確認 のため,開発・試験等が必要となる。

(2)腐食抑制システムの概念設計

③腐食抑制システムの概念設計(その2:PCVの水漏洩有り)

PCVおよび建屋水位維持のために地下水を水処理設備に移送し、処理水を貯留する等の対応を行う この場合、PCVからの漏えい水に含まれる防錆剤と地下水が混合するため、 水処理設備の性能確保を目的として、水処理設備の上流で薬剤濃度を低下させる

©International Research Institute for Nuclear Decommissioning

- (2)腐食抑制システムの概念設計
 - ③腐食抑制システムの概念設計(その2:PCVの水漏洩有り)

●設計方針

- バッファタンクで補給水と混合することにより防錆剤濃度が低下するため、バッファ タンクに防錆剤を供給することで、冷却水中の濃度を一定に維持する。
- 水処理設備の上流に薬剤濃度を低下させる設備を設ける。薬剤濃度の低下方法としては、除去(ワンスルー)、回収(リサイクル)の手法がある。
- 腐食抑制システムとして、(a) PCV内の水質、(b) RPV注水の水質、(c) 水処理設備の入口水質、(d) 放出水の水質を監視する設備を設ける。
- 燃料デブリ取出し作業開始前における防錆剤の注入点は、系統の流量/圧力が 安定し、かつ薬液が長期間滞留することによって水質が変化するリスクが低い箇 所として、CSTポンプ下流とする。燃料デブリ取出し作業中における防錆剤の注入 点は、燃料デブリ切削粉を含む水が防錆剤供給装置の逆流によることを確実に防 止する観点で、循環ループ中のバッファタンクとする。
- 薬剤を貯留する容器や配管などの破損により防錆剤の漏洩を想定し、漏洩検知設備および漏洩拡大防止対策(堰など)を設ける。
- 防錆剤の濃度管理については、短期的な機能喪失により安全機能が阻害されるものではないため、腐食抑制システムについては、設備の多重化を必須としない。但し、臨界管理や漏洩リスク低減の要求により多重化される可能性はある。

(2)腐食抑制システムの概念設計

③腐食抑制システムの概念設計(その2:PCVの水漏洩有り)

No.	項目	
(i)	防錆剤の除去/補充によ るコスト増大	トーラス室からの取水の管理方法として,「除去/補充」を採用する場合 には, PCVからの漏洩量次第で, 多量の薬剤を補充する必要となりコスト が莫大となる可能性がある。
(ii)	防錆剤の回収/再利用に よるコスト,配置スペース 増大	トーラス室からの取水の管理方法として,「回収/再利用(五ホウ酸ナトリ ウム使用時)」を採用する場合には,ホウ酸濃度調整装置の大型化によ りコスト,配置スペースが増加する可能性がある。
(iii)	PCV取水の水処理による コスト,配置スペース増大	PCV内の溶解性放射性物質濃度低減の要求から、PCVからの取水を水 処理設備に移送する場合には、トーラス室からの取水と同様の処理が必 要となるため、課題(i)(ii)の影響が増加する可能性がある。
(iv)	防錆剤の除去要求による 設備大型化, 廃棄物増加	防錆剤によっては、水処理設備の性能担保のために求められる除去性 能以上に、放出基準を満足するために高い除去性能が必要となる可能 性がある。この場合、水処理設備上流の防錆剤除去設備の性能向上ま たは水処理設備の下流への設備追加が必要となるため、更なる設備の 大型化や廃棄物増加の懸念がある。

10. 平成28年度事業成果 (2)腐食抑制システムの概念設計 ④管理要領の策定 1)防錆剤の投入要否の判断基準

推定される炭素鋼の腐食形態1)

IRID

(出典)

表 13 防錆剤の投入要否の判断基準 (PCV内が窒素封入など腐食対策未実施で,再臨界防止剤の 五ホウ酸ナトリウムも注入されていない場合)

PCV滞留水の水質	機器評価注1	防錆剤の 投入
図60において, 不働態(Passivity)領域にある場合	_	不要
	問題なし	不要
図60において, 均一腐食(Uniform Corrosion)領域あるいは 局部腐食の可能性(Localized Corrosion Possible)領域にある場合	問題あり	要

注1:その環境で推定される腐食速度が、PCV炭素鋼機器の 耐震強度上の問題や漏えい等の問題を生じるものか否かを評価

©International Research Institute for Nuclear Decommissioning

1) 深谷ら, 第63回材料と環境討論会(2016), C-109.

(2)腐食抑制システムの概念設計

④管理要領の策定

2)防錆剤の運用方法

表 14 防錆剤の運用方法

再臨界防止剤の五ホウ酸ナトリウムの注入		
有り	無し	
<u>Ⅰ.B≧4000ppmの場合,</u> <u>防錆剤の投入無し</u>	 Ⅲ. リン酸塩系防錆剤(亜鉛/炭酸ナトリウム混 合リン酸塩)を投入 	
(備考) ・水線部での腐食に対するリスクが大きいと判断される場合には, タングステン酸ナトリウムとの併用を検討することが望ましい。	(備考) ・リン酸塩系防錆剤のうち、局部腐食発生リスクのない沈殿皮膜 型である当防錆剤を優先度高とする。 ・高温固着影響を考慮し、実機投入時に燃料デブリの表面温度 が50℃以下であることの確認が必要。(50℃より高温となる場 合、高温固着影響のないⅣの条件を採用。)	
<u>I.B<4000ppmの場合,</u> <u>タングステン酸ナトリウムを投入</u>	 Ⅳ. リン酸塩系防錆剤(亜鉛/モリブデン酸ナト リウム混合リン酸塩)を投入 (備考) ・実機投入時のRPV/PCV内の線量率の確認が必要。 (4kGy/hlにおいてE_{R,CREV}<e<sub>SPとなるため)</e<sub> ・線量率によっては、事前にその適用性の確認試験等を行い、使 用可否を判断すること。 	

- (2)腐食抑制システムの概念設計
 - ④管理要領の策定
 - 3)水質濃度管理基準

● I. 再臨界防止剤の五ホウ酸ナトリウムの注入有り(B≥4000ppm), 防錆剤の投入無し

(出典)

図61 希釈人工海水と五ホウ酸ナトリウム溶液中での炭素鋼の 腐食形態図(公開データ(深谷ほか, 2014)¹⁾をもとに作成)

©International Research Institute for Nuclear Decommissioning

1) 深谷ら, 第61回材料と環境討論会(2014), B-107.

- (2)腐食抑制システムの概念設計
 - ④管理要領の策定
 - 3)水質濃度管理基準

● Ⅱ. 再臨界防止剤の五ホウ酸ナトリウムの注入有り(B<4000ppm), タングステン酸ナトリウムを投入

(2)腐食抑制システムの概念設計

④管理要領の策定

3)水質濃度管理基準

● Ⅲ. **再臨界防止剤の五ホウ酸ナトリウムの注入無し**,

リン酸塩系防錆剤(亜鉛/炭酸ナトリウム混合リン酸塩)を投入

(ZSCMP: Zinc / Sodium Carbonate Mixed Phosphate)

- 10. 平成28年度事業成果
 - (2)腐食抑制システムの概念設計
 - ④管理要領の策定

塩化物イオン濃度+硫酸イオン濃度 [bbm]

- 3)水質濃度管理基準
 - ●Ⅳ. 再臨界防止剤の五ホウ酸ナトリウムの注入無し.

リン酸塩系防錆剤(亜鉛/モリブデン酸ナトリウム混合リン酸塩)を投入

©International Research Institute for Nuclear Decommissioning

11. 全体のまとめ

(1)腐食抑制策の効果・影響の評価

前年度までの成果ならびに、本年度実施した電気化学測定による防錆剤の耐局部腐食 性の評価、リン酸塩系防錆剤の高温部での固着影響評価及び水処理設備への影響評価 結果より、現状、以下の4種の防錆剤を1Fへ適用可能な腐食抑制策として選定した。な お、いずれの防錆剤においても、水処理設備への機能影響を鑑み、希釈・除去等により、 処理対象水中の防錆剤濃度がPCV内投入時よりも低下していることが必要である。

- ●再臨界防止剤としても適用される五ホウ酸ナトリウムは、B≥4000ppmの場合、腐食 抑制策として適用可とした。
- ●タングステン酸ナトリウムは、五ホウ酸ナトリウムと併用することで腐食を抑制できること から、五ホウ酸ナトリウム(B<4000ppmの場合)との併用により適用可とした。
- ●亜鉛/炭酸ナトリウム混合リン酸塩は、五ホウ酸ナトリウムとの併用により耐食性が低下するため、単独で使用すること、また、65℃以上で白色生成物が発生し50℃以下で発生しなかったため、投入時に燃料デブリの表面温度が50℃以下であることを確認することで腐食抑制策として適用可とした。
- ●亜鉛/モリブデン酸ナトリウム混合リン酸塩は、五ホウ酸ナトリウムとの併用により耐食 性が低下するため、単独で使用すること、また、4kGy/hの照射でE_{R,CREV} < E_{SP}となるた め、投入時にRPV/PCV内の線量率を確認し、線量率によってはその適用性の確認を 行うことで腐食抑制策として適用可とした。

11. 全体のまとめ

- (2)腐食抑制システムの概念設計
 - ●選定した防錆剤(腐食抑制策)を実機に適用するための腐食抑制システムの概念設計(PCVの水漏洩有り/無し)を行った。
 - ●防錆剤の管理要領として,防錆剤の投入要否の判断基準,運用方法,水質濃度管理基準を策定した。

12. 他研究開発プロジェクトとの関係

13. 平成28年度実施体制

