

廃棄物試料の分析結果 (瓦礫,水処理設備処理二次廃棄物,汚染水, 処理水,土壌)

平成30年7月26日

技術研究組合 国際廃炉研究開発機構/ 日本原子力研究開発機構

本資料には、平成28年度補正予算「廃炉・汚染水対策事業費補助金 (固体廃棄物の処理・処分に関する研究開発)」成果が含まれている。

無断複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning

概要

- 事故後に発生した固体廃棄物は、従来の原子力発電所で発生した廃棄物と性状が異なるため、廃棄物の処理・処分の安全性の見通しを得る上で性状把握が不可欠である。
- 瓦礫類は、発生の経過が様々であり、汚染の分布も変化に富むと考えられる。瓦礫類の含有する放射能を正確に推定するために、局所的な汚染分布の情報が重要となる。コンクリート試料を対象として、イメージングプレート (IP) 法により汚染分布を分析した結果を報告する。
- 水処理二次廃棄物のうち除染装置スラッジは、セシウム吸着装置により処理した水から種々の 放射性核種を除去しており、また、水を含む状態で保管していることから、廃棄物管理において 重要な対象である。保管上のリスク低減の観点から移送等の取り扱いに重要なデータの取得を 進めており、スラッジの沈殿粒子性状と元素組成を分析した。また、含有する放射性核種濃度を 分析したので、これらの結果を報告する。
- 汚染水中のウラン濃度は、核燃料物質による汚染の状態を推定するために重要である。滞留水や処理水中のウラン同位体組成を分析した結果を報告する。
- 水処理二次廃棄物のうち多核種除去設備に関して、吸着材の含有する放射能量を推定するため、処理水を分析している。同設備は複数の系列を有し、前報※(既設B、増設A系列)に引き続き、既設A系列の処理水を工程から採取し、分析した結果を報告する。
- 土壌が含む放射性核種は、土壌を構成する成分により吸着の程度が異なることが知られている。土壌を湿式法により分級して放射能を分析した結果を報告する。

※ 廃炉・汚染水対策チーム会合/事務局会議(第44回), 平成29年7月27日 廃炉・汚染水対策チーム会合/事務局会議(第40回), 平成29年3月30日

瓦礫試料の局所的な汚染分布 - 分析試料 -

過去に放射性核種組成を分析したコンクリート試料から、瓦礫としての発生の由来が異なるものと 思われるものを選び、イメージングプレート (IP) 法等の分析に供した。

試料名 試料番号 特徴 採取日 塗装なし。 1号機周辺(西側)瓦礫 1U - 032012.7.27 水色の塗装。 3U-01 3号機周辺(西側)瓦礫 2012.6.25 4U-11 4号機周辺(西側)瓦礫 白色の塗装。 2012.6.25 3号機オペフロ瓦礫 白色の塗装。 3RB-OP-C1 2016.6. 覆土式一時保管施設(第3槽) 塗装なし。 3SC-R1 2015.7.31

瓦礫(コンクリート)試料

試料の外観

試料のイメージングプレート (IP) 撮影を行い、塗装を有する面あるいは平坦な面を選び研削する。 研削により得られたコンクリート試料粉末の線量率測定を実施した。この操作を繰り返して行った。

分析のフロー

分析の方法

瓦礫試料の局所的な汚染分布 - 1号機周辺(西側)瓦礫の汚染分布 -

- 試料は、1号機周辺(西側)から採取し、塗膜はなく岩石状であった。
- 上面には2mm程の凸凹があり、全面的な汚染が見られた。それ以降は、側面の汚染が見られた。
- 線量率は、大凡、一定のレベルで推移した。
- 汚染分布は、試料の上面、側面に見られた。内部への浸透はない。

瓦礫試料の局所的な汚染分布 - 3号機周辺(西側)瓦礫の汚染分布 -

試料は、3号機周辺(西側)から採取したコンクリート片で、水色の塗膜があった。
 汚染は側面に見られた。上面の塗膜部分及び試料内部に汚染は見られなかった。
 線量率は、バックグラウンドレベル付近で推移した。

■ 汚染分布は、上面の塗膜部分と内部にはなく、側面に見られた。

瓦礫試料の局所的な汚染分布 -4号機周辺(西側)瓦礫の汚染分布-

- 試料は、4号機周辺(西側)から採取したコンクリート片で、白色の塗膜があった。
- 上面の塗膜がはがれた一部に汚染が見られた。
- 線量率は、研削深さ2mm程度以降はバッググラウンドレベル付近で推移した。 汚染分布は、上面の塗膜のない部分に局所的に見られた。内部への浸透はない。

瓦礫試料の局所的な汚染分布 - 3号機オペフロ瓦礫の汚染分布 -

- 試料は、3号機オペフロから採取したコンクリート片で、白色の塗膜があった。
- 上面の塗膜とコンクリートとの境界部分、側面に汚染が見られた。試料内部に汚染は見られなかった。
- 線量率は、塗膜とコンクリートの境界部分で高い傾向が見られた。それ以降は、バッググラウンドレベル付近で推移した。
- 汚染分布は、塗膜部分と側面に見られ、内部への浸透はない。

瓦礫試料の局所的な汚染分布 - 覆土式一時保管施設(第3槽)の汚染分布 -

- 試料は、覆土式一時保管施設(第3槽)から採取したコンクリート片で、塗膜はなく、上面に泥状の 付着物があった。
- 上面の一部に汚染が見られた。
- 線量率は、試料上面の泥状付着物を除去した後は、バックグラウンドレベル付近で推移した。
- 汚染分布は、上面に局所的に見られた。内部への浸透はない。

瓦礫試料の局所的な汚染分布 - 分析結果 -

瓦礫試料の局所的な汚染分布

=+**1 夕	きょうちょう	IP分析に	よる汚染分	布の推定	汗沈の性治	
武科石	記(本)(0)特(致)	表面	側面	内部	汚染の特徴	
1号機周辺(西側)瓦礫 (1U-03)	塗装なし、岩石状	有り	有り	なし	・表面に汚染有り	
3号機周辺(西側)瓦礫 (3U-01)	塗装有り	なし	有り	なし	・塗膜に汚染なし	
4号機周辺(西側)瓦礫 (4U-11)	塗装有り	有り	なし	なし	・塗膜の一部に汚染有り	
3号機オペフロ瓦礫 (3RB-OP-C1)	塗装有り	有り	有り	なし	 ・塗膜に汚染有り ・塗膜とコンクリートの境界部分 (~深さ4mm)に汚染有り 	
覆土式一時保管施設(第3槽) (3SC-R1)	塗装なし、泥状付着物	有り	なし	なし	・表面に局所汚染有り	

- 瓦礫試料における汚染の分布は一様ではない。
- 瓦礫によって汚染の由来が異なることから、汚染の分布の仕方も変わるものと考えられる。
- IP分析では瓦礫試料の内部から放射性核種が検出されなかった。これより、瓦礫に付着した放射性核種が 二次的に拡散、浸透する程度は大きくないものと考えられる。
- 今後の分析試料の採取、インベントリ推定等においては、汚染分布の不均一性を含めて検討する必要がある。

スラッジとDピット上澄み液試料は、輸送まで一時保管した^{※1}。スラッジ試料は元のバイアル瓶(10mL)を手で振り撹拌した後、ピペッターで約1mLずつ別のバイアル瓶(10mL)に分取し、いずれも分析施設へ輸送した。

受け入れたスラッジ試料

一時保管中のスラッジ試料

分取後のスラッジ試料

※1 輸送までガス抜きのため蓋を緩めて保管したため、一部水分が蒸発した。

	試料名	試料番号		試料量	採取	分取	
1		ン LI-AR-SL1	(LI-AR-SL1-1) ^{**2}	約 1 mL		H29.8.31	
2	除染装置スラッジ		(LI-AR-SL1-2) ^{**2}	約1mL	H29.7.18		
3				約 10 mL			

※2 元バイアル瓶から分取したスラッジ試料に枝番を付与

除染装置スラッジ - 分析試料の表面線量及び分析内容 -

試料番号 ^{※1}		試料量	分析項目	線量率(γ) ^{※2} (mSv/h)
(-1) 約1mL	化学組成 (SEM-EDX ^{※3})	0.8		
LI-AR-SL1	(-2)	約 1 mL	密度、乾燥質量、	0.8
	(-3)	約 10 mL	放射能濃度、核種濃度	7.0

本報の内容。他は前報*。

- ※1 カッコは試料の分取に伴う枝番号。
- ※2 シリコン半導体検出器サーベイメータ(日立アロカ製型式:PDR-301)を使用。バイアル瓶を撹拌し側面にて測定した。
- ※3 走査型電子顕微鏡 (Scanning Electron Microscope) とそれに付属するエネルギー分散型X線分析装置 (Energy Dispersive X-ray Detector) の略称。

廃炉・汚染水対策チーム会合/事務局会議(第52回), 平成30年3月29日. ^{©International Researc}

除染装置スラッジ

- 沈殿粒子性状(SEM-EDX測定結果)-

SEM-EDXによりスラッジを構成する粒子の形状を観察するとともに、元素組成を測定した。
 スラッジを入れたバイアルに純水1 mL を加えて撹拌し、分散させた。この一部を分取しフィルターに滴下、乾燥後、白金蒸着して、SEM-EDXの試料を得た。

スラッジを構成する粒子は、複数の形状を示しており、組成の異なる成分の混合物であることが確認された。また、純水で希釈分散されることを確認した。

濃い灰色の部分はフィルタの繊維

観察倍率5000倍

観察倍率1000倍(希釈分散させた状態)

スラッジのSEM像

除染装置スラッジ - 化学組成(質量比、構成物質の推定)-

 EDX面分析結果から、BaとSが多く存在することを確認した。
 BaSO₄が6~7割を占める。次いでフェロシアン化物が多いものと推定される。また、 Znが検出された。

EDX元素分析結果 (面分析及び点分析)

©International Research Institute for Nuclear Decommissioning

©International Research Institute for Nuclear Decommissioning

除染装置スラッジ - γ 及び β 核種分析結果 -

	放射能濃度〔Bq/cm ³ 〕 ^{※1}							
試料名	⁵⁴ Mn	⁶⁰ Co	⁹⁴ Nb	¹²⁵ Sb	¹³⁴ Cs			
	(約312日)	(約5.3年)	(約2.0×10 ⁻ 年)	(約2.8年)	(約2年)			
LI-AR-SL1 ^{※2} (硝酸溶解液)	$(4.1\pm0.3)\times10^4$	$(4.1\pm0.1)\times10^{3}$	< 3 × 10 ¹	$(2.6 \pm 0.1) \times 10^4$	$(2.7\pm0.1)\times10^4$			
同上 (混酸溶解液)	< 1 × 10 ⁴	$(1.8 \pm 0.2) \times 10^3$	< 4 × 10 ¹	$< 4 \times 10^4$ $(1.1 \times 10^3)^{3}$	$(6.5\pm0.1) \times 10^{6}$			
同上 (アルカリ溶解液)	< 4 × 10 ⁴	< 2 × 10 ²	< 1 × 10 ²	< 5 × 10 ³	$(6.2 \pm 0.1) \times 10^5$			
LI-AR-SL1	$(4.1\pm0.3)\times10^4$	$(5.9\pm0.2)\times10^{3}$		$(2.6\pm0.1)\times10^4$	$(7.2\pm0.1)\times10^{6}$			

	放射能濃度〔Bq/cm ³ 〕 ^{※1}							
試料名	¹³⁷ Cs	¹⁵² Eu	¹⁵⁴ Eu	⁹⁰ Sr				
	(約30年)	(約14年)	(約8.6年)	(約29年)				
LI-AR-SL1 (硝酸溶解液)	$(2.7\pm0.1)\times10^4$	< 8 × 10 ¹	< 2 × 10 ²	$(3.6\pm0.1)\times10^{6}$				
同上 (混酸溶解液)	$(6.5\pm0.1) \times 10^{6}$	< 2 × 10 ²	< 2 × 10 ²	$(4.3\pm0.1) \times 10^{6}$				
同上 (アルカリ溶解液)	$(6.3\pm0.1)\times10^{5}$	< 7 × 10 ²	< 4 × 10 ²	$(5.8\pm0.1)\times10^{7}$				
LI-AR-SL1	$(7.1\pm0.1)\times10^{6}$			$(6.6 \pm 0.1) \times 10^7$				

※1 放射能濃度は、2011.3.11において補正。分析値の±の 後の数値は、計数誤差である。合計は定量値の合算。

※2 LI-AR-SL1-3を分析。

- ※3 Cs除去処理での収率を補正していないため参考値。
- γ核種は¹³⁴Cs、¹³⁷Csが主要な核種であった。⁵⁴Mn、⁶⁰Co及び ¹²⁵Sbが検出され、⁹⁴Nb、¹⁵²Eu、¹⁵⁴Euは不検出であった。
 β核種の⁹⁰Srは、¹³⁷Csに対して約10倍の濃度であった。

除染装置スラッジ - α核種分析結果 -

	放射能濃度 [Bq/cm ³] ^{※1}						
試料名	²³⁸ Pu ²³⁹ Pu+ ²⁴⁰ Pu		²⁴¹ Am	²⁴⁴ Cm			
	(約88年)		(約4.3×10 ² 年)	(約18年)			
LI-AR-SL1 ^{※2} (硝酸溶解液)	$(1.4 \pm 0.4) \times 10^{-2}$	< 7 × 10 ⁻³	< 2 × 10 ⁻²	< 2 × 10 ⁻²			
LI-AR-SL1	$(1.4\pm0.4)\times10^{-2}$						

※1 放射能濃度は、2011.3.11において補正。分析値の±の後の数値は、計数値誤差である。合計は定量値の合算。 ※2 LI-AR-SL1-2を分析。

α 核種では²³⁸Puを検出した。濃度は、これまでに分析した水処理二次廃棄物のうち最もα 放射能濃度の高い多核種除去設備鉄共沈スラリー*と比べると 2 桁程度低い。

廃炉·汚染水対策チーム会合/事務局会議(第21回), 平成27年8月27日. ^{Clinternational Rese}

■ 1、2及び3号機 R/B滞留水、セシウム吸着装置処理水等のU同位体組成を分析した。

試料名	試料番号	採取日	採取場所	他の核種についての報告
1号機R/B 滞留水	LI-1RB-1	2016.12.8	原子炉建屋地下から移送した滞留水 を高温焼却炉建屋の採水口にて採取	廃炉・汚染水対策チーム会合/第44回事務局会議
2号機TB 滞留水	LI-2TB7-1	2015.9.25	2号機タービン建屋地下	同上
3号機TB 滞留水	LI-3TB7-1	2015.10.15	3号機タービン建屋地下	同上
1号機PCV凝縮水	LI-1PCV-1	2016.12.7	1号機PCVガス管理システム設備	同上
	LI-RW2-1	2013.7.9	プロセス主建屋3階サンプリングライン	廃炉・汚染水対策チーム会合/第20回事務局会議
	LI-RW3-1	2014.9.3	同上	廃炉・汚染水対策チーム会合/第28回事務局会議
│ 集中廃棄物処理建屋 │	LI-HTI2-1	2013.7.9	高温焼却炉建屋1FL機器ハッチ	廃炉・汚染水対策チーム会合/第20回事務局会議
	LI-HTI3-1	2014.8.5	同上	廃炉・汚染水対策チーム会合/第28回事務局会議
	LI-HTI6-2	2015.9.8	高温焼却炉建屋	廃炉・汚染水対策チーム会合/第44回事務局会議
セシウム吸着装置 (KURION) 処理水	LI-KU7-1~4	2016.7.25	SMZスキッド出口/H2-4出口/H3-4出 ロ/出口サンプリングライン	同上
	LI-SA2-1	2013.8.13	S-4A出ロサンプリングライン	廃炉・汚染水対策チーム会合/第20回事務局会議
第二セシウム吸着装置	LI-SA3-1	2014.8.5	同上	廃炉・汚染水対策チーム会合/第28回事務局会議
(SARRY) 処理水	LI-SA6-3~4	2015.9.8	S-2A/S-2B出ロサンプリングライン	廃炉・汚染水対策チーム会合/第44回事務局会議
1号機R/B 滞留水LI-1RB-12号機TB 滞留水LI-2TB7-13号機TB 滞留水LI-3TB7-11号機PCV凝縮水LI-1PCV-1上子機PCV凝縮水LI-RW2-1LI-RW3-1LI-RW3-1LI-HTI2-1LI-HTI2-1満留水LI-HTI3-1LI-HTI6-2LI-KU7-1~なシウム吸着装置 (KURION)処理水LI-SA2-1第ニセシウム吸着装置 (SARRY)処理水LI-SA3-1LI-SA6-3~LI-SA7-1~	LI-SA7-1~2	2016.7.25	F-2B/S-1B出ロサンプリングライン	同上

汚染水

- 滞留水のU同位体と137Cs濃度の関係 -

- U同位体/137Cs比に関して、U同位体間の差は見られない。
- 2及び3号機PCV滞留水のU同位体/¹³⁷Cs比は、R/B滞留水、T/B滞留水、集中RW 滞留水に比べて1桁程度大きい。

³⁴ U/ ¹³⁷ Cs比	1号機T/B	2号機T/B	3号機T/B	²³⁵ U/ ¹³⁷ Cs比	1号機T/B	2号機T/B	3号機T/B	²³⁸ U/ ¹³⁷ Cs比	1号機T/B	2号機T/B	3号機T/B
滞留水	<4.5 × 10 ⁻⁹	1.5 × 10 ⁻⁹	5.4×10 ⁻⁹	滞留水	3.9×10 ⁻¹¹	6.2 × 10 ⁻¹¹	1.3×10 ⁻¹⁰	滞留水	7.9×10 ⁻¹⁰	7.2 × 10 ⁻¹⁰	1.1×10 ⁻⁹
燃料 ^{※4}	2.1 × 10 ⁻⁵	2.4 × 10 ⁻⁵	2.5×10⁻⁵	燃料※4	5.0 × 10 ⁻⁷	6.0×10 ⁻⁷	6.6 × 10 ⁻⁷	燃料※4	4.5×10 ⁻⁶	4.9×10 ⁻⁶	5.2×10 ⁻⁶

※1 本報告が初出。 ※2 廃炉・汚染水対策チーム会合/第54回事務局会議にて報告。 ※3 2012年度から2016年度に取得したデータ。 ※4 損傷燃料の燃焼計算値(2011.3.11時点)。

- ²³⁴U/²³⁸U比、²³⁵U/²³⁸U比ともに採取場所による差異が見られ、損傷燃料と天然ウランの比の間の値である。滞留水中のウランの起源としては、損傷燃料や各種材料等に含まれる天然の成分の寄与が考えられる。
- ²³⁴U/²³⁸U比と²³⁵U/²³⁸U比は、多くの場合で天然ウランの比より損傷燃料の値に近い。1号機 R/B及びT/B、2号機T/Bで比が小さく、天然ウランの寄与が相対的に大きい。

²³⁴U/²³⁸U比、²³⁵U/²³⁸U比ともに、KURION処理水は、炉心燃料計算値やSARRY処理水に比べて低い傾向にある。但し、天然での比よりも高い。

	放射能濃度〔Bq/cm ³ 〕 [※]							
試料名	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U				
	(約2.5×10 ⁵ 年)	(約7.0×10 ⁸ 年)	(約2.3×10 ⁷ 年)	(約4.5×10 ⁹ 年)				
LI-1RB-1	$(1.7\pm2.1)\times10^{-5}$	$(4.7\pm0.1)\times10^{-7}$	$(2.2\pm0.3)\times10^{-6}$	$(5.6\pm0.4)\times10^{-6}$				
LI-2TB7-1	$(1.8\pm2.1)\times10^{-5}$	$(7.4\pm0.1)\times10^{-7}$	$(3.5\pm0.3)\times10^{-6}$	$(8.6\pm0.4)\times10^{-6}$				
LI-3TB7-1	$(1.4\pm0.3)\times10^{-4}$	$(3.3\pm0.1)\times10^{-5}$	$(1.8\pm0.1)\times10^{-5}$	$(2.8\pm0.1)\times10^{-5}$				
LI-1PCV-1	<1.6 × 10 ⁻⁶	<7.5 × 10 ⁻¹⁰	<7.2×10 ⁻⁹	$(6.3 \pm 10) \times 10^{-10}$				
LI-RW2-1	$(4.4 \pm 2.4) \times 10^{-5}$	$(9.9\pm0.6)\times10^{-7}$	$(4.8\pm0.3)\times10^{-6}$	$(9.3\pm0.6)\times10^{-6}$				
LI-RW3-1	$(6.3\pm2.4)\times10^{-5}$	$(1.2\pm0.1)\times10^{-6}$	$(6.4\pm0.4)\times10^{-6}$	$(1.2\pm0.1)\times10^{-5}$				
LI-HTI2-1	$(5.8\pm2.4)\times10^{-5}$	$(1.5\pm0.1)\times10^{-6}$	$(8.2\pm0.5)\times10^{-6}$	$(1.4\pm0.7)\times10^{-5}$				
LI-HTI3-1	$(7.1\pm2.4)\times10^{-5}$	$(1.7\pm0.1)\times10^{-6}$	$(9.2\pm0.5)\times10^{-6}$	$(1.6\pm0.1)\times10^{-5}$				
LI-HTI6-2	$(4.7\pm2.1)\times10^{-5}$	$(1.3\pm0.2)\times10^{-6}$	$(7.1\pm0.3)\times10^{-6}$	$(1.2\pm0.1)\times10^{-5}$				

※放射能濃度は、2011.3.11において補正。核種の下の括弧内は半減期。分析値の±の後の数値は、計数誤差である。

	放射能濃度〔Bq/cm ³ 〕 [※]							
試料名	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U				
	(約2.5×10 ⁵ 年)	(約7.0×10 ⁸ 年)	(約2.3×10 ⁷ 年)	(約4.5×10 ⁹ 年)				
LI-KU7-1	$(5.8\pm2.1)\times10^{-5}$	$(1.5\pm0.1)\times10^{-6}$	$(6.6\pm0.3)\times10^{-6}$	$(1.6\pm0.1)\times10^{-5}$				
LI-KU7-2	$(5.7\pm0.4)\times10^{-5}$	$(1.7\pm0.1)\times10^{-6}$	$(7.3\pm0.1)\times10^{-6}$	$(1.9\pm0.1)\times10^{-5}$				
LI-KU7-3	$(9.5\pm4.3)\times10^{-6}$	$(2.3\pm0.1)\times10^{-7}$	$(8.6\pm0.6)\times10^{-7}$	$(2.7\pm0.1)\times10^{-6}$				
LI-KU7-4	$(8.7\pm4.3)\times10^{-6}$	$(2.9\pm0.1)\times10^{-7}$	$(8.4\pm0.6)\times10^{-7}$	$(4.0\pm0.1)\times10^{-6}$				
LI-SA2-1	$(5.8\pm2.4)\times10^{-5}$	$(1.3\pm0.1)\times10^{-6}$	$(6.9\pm0.4)\times10^{-6}$	$(1.2\pm0.1)\times10^{-5}$				
LI-SA3-1	$(7.4 \pm 2.4) \times 10^{-5}$	$(1.6\pm0.1)\times10^{-6}$	$(8.3\pm0.5)\times10^{-6}$	$(1.4\pm0.1)\times10^{-5}$				
LI-SA6-3	<1.6 × 10 ⁻⁶	$(3.7\pm1.8)\times10^{-9}$	<7.3×10 ⁻⁹	$(3.4\pm0.1)\times10^{-8}$				
LI-SA6-4	<1.6 × 10 ⁻⁶	$(4.0\pm1.8)\times10^{-9}$	<7.2×10 ⁻⁹	$(3.7\pm0.1)\times10^{-8}$				
LI-SA7-1	$(9.8\pm2.1)\times10^{-5}$	$(2.5\pm0.1)\times10^{-6}$	$(1.2\pm0.1)\times10^{-5}$	$(2.5\pm0.1)\times10^{-5}$				
LI-SA7-2	<1.6 × 10 ⁻⁶	$(5.4 \pm 1.8) \times 10^{-9}$	$(7.8\pm53) \times 10^{-9}$	$(5.8\pm0.1)\times10^{-8}$				

※放射能濃度は、2011.3.11において補正。核種の下の括弧内は半減期。分析値の土の後の数値は、計数誤差である。

多核種除去設備処理水 - 試料の性状-

多核種除去設備の運転により生じる二次廃棄物に関して、使用済み吸着材が 含有する放射能の推定に資するため、A系列設備の処理水試料を対象として 以下の核種を分析した。

⁶⁰Co, ⁶³Ni, ⁷⁹Se, ⁹⁰Sr, ⁹⁴Nb, ⁹⁹Tc, ¹²⁶Sn, ¹²⁹I, ¹³⁷Cs, ¹⁵²Eu, ¹⁵⁴Eu, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am, ²⁴⁴Cm

試料名	採取日	採取場所
LI-EAL9A-1	2017.3.15	入口
LI-EAL9A-2	2017.3.15	既設A系列鉄共沈処理設備出口
LI-EAL9A-3	2017.3.15	既設A系列炭酸塩沈殿処理設備出口
LI-EAL9A-4	2017.3.15	既設A系列Ag添着活性炭出口
LI-EAL9A-5	2017.3.15	既設A系列チタン酸塩①出口
LI-EAL9A-6	2017.3.15	既設A系列チタン酸塩②出口
LI-EAL9A-7	2017.3.15	既設A系列酸化チタン出口
LI-EAL9A-8	2017.3.15	既設A系列銀ゼオライト出口
LI-EAL9A-9	2017.3.15	既設A系列酸化セリウム出口
LI-EAL9A-10	2017.3.15	既設A系列キレート樹脂①出口
LI-EAL9A-11	2017.3.15	既設A系列活性炭出口

	放射能濃度[Bq/cm ³] [※]							
試料名	⁶⁰ Co	⁶³ Ni	⁷⁹ Se	⁹⁰ Sr	⁹⁴ Nb	⁹⁹ Tc		
	(約5.3年)	(約1.0×10 ² 年)	(約6.5×10 ⁴ 年)	(約29年)	(約2.0×10 ⁴ 年)	(約2.1×10 ⁵ 年)		
LI-EAL9A-1	(8.5±0.9) × 10 ⁻²	(5.6±0.2) × 10 ⁻¹	< 5 × 10 ⁻²	$(2.0\pm0.1) \times 10^2$	< 2 × 10 ⁻²	< 5 × 10 ⁻²		
LI-EAL9A-2	< 4 × 10 ⁻²	(1.2±0.1) × 10 ⁻¹	< 5 × 10 ⁻²	$(2.1\pm0.1) \times 10^2$	< 2 × 10 ⁻²	< 5 × 10 ⁻²		
LI-EAL9A-3	< 4 × 10 ⁻²	< 6 × 10 ⁻²	< 5 × 10 ⁻²	$(4.6\pm0.1) \times 10^{1}$	< 2 × 10 ⁻²	< 5 × 10 ⁻²		
LI-EAL9A-4	< 4 × 10 ⁻²	< 6 × 10 ⁻²	_	(4.5±0.1) × 10 ¹	< 2 × 10 ⁻²	_		
LI-EAL9A-5	< 4 × 10 ⁻²	< 6 × 10 ⁻²	_	(1.5±0.1) × 10 ⁰	< 2 × 10 ⁻²	_		
LI-EAL9A-6	< 4 × 10 ⁻²	< 6 × 10 ⁻²	_	$(4.4\pm0.2) \times 10^{-1}$	< 2 × 10 ⁻²	_		
LI-EAL9A-7	< 4 × 10 ⁻²	< 6 × 10 ⁻²	_	< 6 × 10 ⁻²	< 2 × 10 ⁻²	_		
LI-EAL9A-8	< 4 × 10 ⁻²	< 6 × 10 ⁻²	_	(2.4±0.2) × 10 ⁻¹	< 2 × 10 ⁻²	_		
LI-EAL9A-9	< 4 × 10 ⁻²	< 6 × 10 ⁻²	_	< 6 × 10 ⁻²	< 2 × 10 ⁻²	_		
LI-EAL9A-10	< 4 × 10 ⁻²	< 6 × 10 ⁻²	_	< 6 × 10 ⁻²	< 2 × 10 ⁻²	_		
LI-EAL9A-11	< 4 × 10 ⁻²	< 6 × 10 ⁻²	< 5 × 10 ⁻²	< 6 × 10 ⁻²	< 2 × 10 ⁻²	< 5 × 10 ⁻²		

※ 放射能濃度は、2011.3.11において補正。核種の下の括弧内は半減期。分析値の±の後の数値は、計数誤差である。 「-」は、分析していないことを表す。

■ ⁶³NiはLI-EAL9A-3で、⁹⁰SrはLI-EAL9A-9で不検出となった。

■ ⁷⁹Se、⁹⁴Nb、⁹⁹Tcは測定した全ての試料で不検出であった。

	放射能濃度[Bq/cm ³] [※]							
試料名	¹²⁶ Sn	¹²⁹	¹³⁷ Cs	¹⁵² Eu	¹⁵⁴ Eu			
	(約1.0×10 ⁵ 年)	(約1.6×10 ⁷ 年)	(約30年)	(約14年)	(約8.6年)			
LI-EAL9A-1	< 5 × 10 ⁻²	(2.8±0.1) × 10 ⁻²	(1.2±0.1) × 10 ⁻¹	< 2 × 10 ⁻¹	< 7 × 10 ⁻²			
LI-EAL9A-2	< 5 × 10 ⁻²	(3.4±0.2) × 10 ⁻²	(3.0±0.1) × 10 ⁻¹	< 2 × 10 ⁻¹	< 7 × 10 ⁻²			
LI-EAL9A-3	< 5 × 10 ⁻²	< 2 × 10 ⁻²	(3.1±0.1) × 10 ⁻¹	< 2 × 10 ⁻¹	< 7 × 10 ⁻²			
LI-EAL9A-4	_	< 2 × 10 ⁻²	(3.9±0.1) × 10 ⁻¹	< 2 × 10 ⁻¹	< 7 × 10 ⁻²			
LI-EAL9A-5	_	< 2 × 10 ⁻²	(8.1±0.1) × 10 ⁻¹	< 2 × 10 ⁻¹	< 7 × 10 ⁻²			
LI-EAL9A-6	_	< 2 × 10 ⁻²	< 2 × 10 ⁻²	< 2 × 10 ⁻¹	< 7 × 10 ⁻²			
LI-EAL9A-7	—	< 2 × 10 ⁻²	< 2 × 10 ⁻²	< 2 × 10 ⁻¹	< 8 × 10 ⁻²			
LI-EAL9A-8	-	< 2 × 10 ⁻²	< 2 × 10 ⁻²	< 2 × 10 ⁻¹	< 8 × 10 ⁻²			
LI-EAL9A-9	_	< 2 × 10 ⁻²	< 2 × 10 ⁻²	< 2 × 10 ⁻¹	< 8 × 10 ⁻²			
LI-EAL9A-10	_	< 2 × 10 ⁻²	< 2 × 10 ⁻²	< 2 × 10 ⁻¹	< 7 × 10 ⁻²			
LI-EAL9A-11	< 5 × 10 ⁻²	< 2 × 10 ⁻²	< 2 × 10 ⁻²	< 2 × 10 ⁻¹	< 7 × 10 ⁻²			

※ 放射能濃度は、2011.3.11において補正。核種の下の括弧内は半減期。分析値の±の後の数値は、計数誤差である。 「-」は、分析していないことを表す。

- ¹³⁷CsはLI-EAL9A-6で不検出となった。
- ¹²⁶Sn、¹⁵²Eu、¹⁵⁴Euは全ての試料で不検出であった。

	放射能濃度[Bq/cm ³] [※]					
試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm		
	(約88年)	(約2.4×10 ⁴ 年、約6.6×10 ³ 年)	(約4.3×10 ² 年)	(約18年)		
LI-EAL9A-1	< 1 × 10 ⁻³	< 1 × 10 ⁻³	< 1 × 10 ⁻³	< 2 × 10 ⁻³		
LI-EAL9A-2	< 1 × 10 ⁻³	< 1 × 10 ⁻³	< 1 × 10 ⁻³	< 2 × 10 ⁻³		
LI-EAL9A-3	< 1 × 10 ⁻³	< 1 × 10 ⁻³	< 1 × 10 ⁻³	< 2 × 10 ⁻³		
LI-EAL9A-4	-	_	-	-		
LI-EAL9A-5	-	_	-	-		
LI-EAL9A-6	-	_	-	-		
LI-EAL9A-7	_	_	—	-		
LI-EAL9A-8	-	_	-	-		
LI-EAL9A-9	-	_	-	-		
LI-EAL9A-10	_	_	_	_		
LI-EAL9A-11	< 1 × 10 ⁻³	< 1 × 10 ⁻³	< 1 × 10 ⁻³	< 2 × 10 ⁻³		

※ 放射能濃度は、2011.3.11において補正。核種の下の括弧内は半減期。「-」は、分析していないことを表す。 ²³⁹⁺²⁴⁰Puの半減期補正は²⁴⁰Puの半減期(約6.6×10³年)を使用。

- ²³⁸Pu、²³⁹⁺²⁴⁰Pu、²⁴¹Am、²⁴⁴Cmは全ての試料で不検出であった。
- 多核種除去設備の処理水(設備出口のLI-EAL9A-11)は、分析の結果、放射性 核種は不検出であった。(ただし、トリチウムは除去されていない。)

試料番号	採取場所(下図参照)	採取日	質量 [g]	線量率 [μSv/h(γ)]	備考
S2-K2-1-1	Kエリア	2015.3.16	50	0.8	放射能濃度を既報 *1
S2-P1-1-1	Pエリア	2015.5.8	50	1.4	同上
S3-H4A-1	H4タンクエリア(測定点A)	2016.3.3	35	2.0	

土壤試料採取場所

試料の外観

©International Research Institute for Nuclear Decommissioning

廃棄物試料の分析結果(土壌、焼却灰、並びに水処理設備(セシウム吸着装置、多核種除去設備)出入口水),廃炉・汚染水対策チーム会合/事務局会議(第40回),平成29年3月30日.

- 土壌を乾燥し、質量を測定した後に、元素濃度を分析した。
- 湿式法により試料を分級した。乾燥して質量を測定した。
 - ✓ JIS規格公称目開き 2.8 mm及び 90 µm のふるいを使用。2.8 mm以上の粒子は含まれていなかった。
- 分級した土壌中の全α、⁹⁰Sr、¹³⁷Cs濃度を分析した。

湿式分級の様子 (純水を加え、団粒を解きほぐしながらろ別)

湿式分級による土壌の粒度分布[質量%]

試料番号	<0.09 [mm]	0.09~2.8 [mm]	>2.8 [mm]
S2-K2-1-1	79	21	0
S2-P1-1-1	57	43	0
S3-H4A-1	45	55	0

■ ¹³⁷Csと⁹⁰Srは粒径にかかわらず同じように移行し、粒径の小さい土壌に濃縮される。

				/-				
試料番号	粒径 [mm]	全α	⁹⁰ Sr	¹³⁷ Cs	試料番号	粒径 [mm]	⁹⁰ Sr	¹³⁷ Cs
S2-K2-1-1	<0.09	< 2 × 10 ⁻³	(1.3±0.2) × 10 ⁻¹	$(6.9\pm0.7) \times 10^{0}$	S2 V2 1 1	<0.09	89%	90%
	0.09~2.8	< 2 × 10 ⁻³	< 6 × 10 ⁻²	$(2.9\pm0.7) \times 10^{0}$	32-82-1-1	0.09~2.8	11%	10%
S2-P1-1-1	<0.09	< 2 × 10 ⁻³	$(1.6\pm0.1) \times 10^{0}$	$(1.2\pm0.1) \times 10^3$		<0.09	94%	95%
	0.09~2.8	< 2 × 10 ⁻³	$(1.3\pm0.2) \times 10^{-1}$	$(7.7\pm0.2) \times 10^{1}$	S2-P1-1-1	0.09~2.8	6%	5%
	<0.09	< 2 × 10 ⁻³	$(2.7\pm0.1) \times 10^3$	$(4.5\pm0.2) \times 10^{1}$	C2 LL / A 1	<0.09	88%	93%
33-114A-1	0.09~2.8	< 2 × 10 ⁻³	$(3.0\pm0.1)\times10^2$	$(2.6\pm0.3) \times 10^{0}$	ээ-п4А-1	0.09~2.8	12%	7%

湿式分級した土壌試料の放射能濃度 [Bq/g]

湿式分級した土壌試料の放射能物質収支

 ⁹⁰Srと¹³⁷Csの放射能濃度は、2011.3.11において補正。分析値の±の後の数 値は、計数誤差。粒径2.8 mm以上の粒子は含まれていなかった。

土壌試料の元素濃度 [mg/g]

ᆍᄳᆇᄆ	元素						
武州田万	Na	Mg	Al	Si	K	Ca	Fe
S2-K2-1-1	4.7	5.5	85.3	254.3	8.0	51.1	36.3
S2-P1-1-1	10.6	3.6	75.0	278.1	8.9	85.9	31.5
S3-H4A-1	18.2	4.8	33.8	271.6	16.5	22.2	95.5

まとめ

- 「瓦礫試料(コンクリート)をイメージングプレート測定することにより、汚染の分布は不均 ーであり、汚染が生じたときにばく露していた面に留まっている傾向が見られた。廃棄物 が含有する放射能量を推定する場合には、分布の不均一性を考慮する必要がある。
- 除染装置のスラッジをSEM-EDX測定し、沈殿は複数の種類の粒子により構成され、他に水の添加により容易に分散することを明らかにした。また、放射性核種濃度を分析し、主な核種はβ線を放出する⁹⁰Srであり、主要なγ線放出核種として¹³⁷Cs、¹³⁴Cs及び¹²⁵Sbを、また、α線放出核種として²³⁸Puを含むことを明らかにした。
- 常留水や汚染水処理水中のウラン濃度を分析し、ウランのソースタームとしては、損傷した燃料と建屋等の構造材料が含む不純物が寄与することを明らかにした。
- 多核種除去設備処理水の分析結果から、⁹⁰Srや¹³⁷Csと共に、長半減期核種である⁶³Ni や¹²⁹Iも工程の上流側で除去されており、他系列のデータと同様の傾向であった。
- 土壌を湿式法により分級し、粒径の小さな粒子にセシウムとストロンチウムが濃集されていることを確認した。
- 固体廃棄物の性状に関するデータを蓄積するために、試料の採取と分析を継続していく。

